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Sharma, Ashesh (Ph.D., Aerospace Engineering Sciences)

Advances in Design and Optimization using Immersed Boundary Methods

Thesis directed by Prof. Kurt K. Maute

This thesis is concerned with topology optimization which provides engineers with a

systematic approach to optimize the layout and geometry of a structure against various

design criteria. Traditional topology optimization uses density-based methods to capture

topological changes in geometry. Density-based methods describe a structural layout using

artificial elemental densities. To obtain a good resolution of the geometry, fine meshes are

required. This however leads to large computational costs in 3D. Using coarser but practical

meshes results in blurred structural boundaries and unreliable prediction of physical response

along those boundaries. Using immersed boundary methods instead, such as the extended

finite element method (XFEM), alleviates these issues. The XFEM provides clear description

of the geometry, and approximation of the physical response along boundaries has been shown

to converge to the approximation using body-fitted meshes. This thesis focuses on the use of

XFEM for topology optimization. Design geometry in this thesis is tracked precisely using

the level set method (LSM).

The LSM-XFEM approach is used to solve variety of multiphysics design and opti-

mization problems. However, being a relatively new field of study the LSM-XFEM approach

continues to pose many interesting challenges limiting its applicability to topology optimiza-

tion. The goal of this thesis is to present advances made towards making LSM-XFEM more

viable and reliable for design and optimization of multiphysics problems. Specifically, i) The

numerical behavior of XFEM-based shape sensitivities has not yet been investigated. This

thesis presents a first-of-its kind study on the numerical behavior of shape sensitivities using

the XFEM. ii) The matter of overestimation of stresses using the XFEM, a longstanding issue

with no concrete resolution available in the literature, is addressed for robust stress-based



www.manaraa.com

iv

optimization. iii) LSM-based topology optimization is known to suffer from slow design

evolution resulting from localized sensitivities. A recently proposed concept of geometric

primitives as design variables alleviates this issue. Literature on this concept has been re-

stricted to single material problems using linear elasticity. Using the XFEM, this thesis

extends the concept of geometric primitives as design variables to multiphase multiphysics

problems in 3D.
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Chapter 1

Introduction

1.1 Context

Aggressive measures to cut manufacturing costs by reducing weights gave rise to the

field of structural optimization. Structural optimization aims at finding the optimal design

of a mechanical structure against various design criteria such as stiffness, allowable stress,

allowable mass, desired displacement profile, etc. Before the advent of computational tech-

niques, structural components such as beams and plates were optimized using variational

calculus [108]. Development of the finite element method (FEM) gave rise to numerical struc-

tural optimization [111]. Initial applications were to trusses in civil engineering. Changes in

design were limited to variation in size as determined by the cross-sectional areas of beams

or thickness of plates. This class of optimization came to be known as size optimization.

Size optimization was followed by shape optimization wherein the goal is to determine the

optimal shape of internal and external structural boundaries without altering the topology.

Shape optimization was traditionally associated with Lagrangian approaches wherein the

nodal coordinates of a finite element mesh constitute the design variables [51]. In contrast,

topology optimization allows significant changes in both the layout and the geometry of the

structure. Figure 1.1 presents a simple comparison depicting the differences between size,

shape, and topological changes in a design.

Topology optimization was pioneered in [13] as a porous material distribution prob-

lem, wherein properties of the material were evaluated using the homogenization theory
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Figure 1.1: Initial design (left most) undergoing various types of design changes: Size change
(second from left); Shape change (second from right); Topological change (right most).

[38]. Soon after, the concept of solid isotropic material with penalization (SIMP) was intro-

duced in [11] as means to improving the convergence of the material distribution to 0 − 1

solutions. Both these approaches qualify as density-based methods, and have become very

popular for performing topology optimization. Artificial elemental densities constitute the

design variables in a density-based method, hence the name. Since their inception signifi-

cant research has been performed in the area of density-based methods including resolving

numerical instabilities [116] as well as extending topology optimization to various physics

ranging from photonics [57] to Stokes flow [15] to natural convection [2]. For a better insight

into the developments made in the field of density-based methods, the reader is referred to

the comprehensive reviews in [12, 115]. During the optimization process in density-based

methods, there may exist grey regions comprising of elements with intermediate densities.

Unless the geometry is aligned with the discretization of the density field, the geometry is

either smeared across elements or approximated by a jagged boundary as shown in Figure

1.2. Either scenario leads to a lack of resolution of the geometry. As a result it is challenging

to predict the physical response of a system accurately along the material geometry. To

obtain a good resolution of the geometry, fine meshes are required. This however leads to

large computational costs in 3D.

Level set methods (LSM) are often viewed as an alternative to density-based methods.

Introduced in [98] the LSM presents a flexible framework for tracking an evolving geometry.
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Using the LSM the interface between material phases is defined implicitly by iso-contours of

a level set function (LSF) as discussed in Section 1.4.1. The LSM results in crisp material

boundaries, avoiding obscurity of intermediate material phases associated with density-based

methods. Level set-based topology optimization requires mapping of the geometry to a me-

chanical model. Common ways to map the geometry include a conforming discretization

[1, 61], density-based mapping [4, 132], and immersed boundary methods [82, 90]. Con-

forming discretization differs from shape optimization methods in that shape changes are

governed by the evolution of an LSF [28]. Density-based mapping usually involves either

element-wise constant material fractions or a direct point-wise mapping of the LSF onto a

density distribution [28]. Confirming discretization and density-based mapping suffer from

the same drawbacks as those involved with body-fitted meshes for shape optimization and

density-based methods, respectively. In contrast immersed boundary methods [88, 119] have

been incorporated in topology optimization [76, 127] to alleviate issues associated with con-

firming discretization and density-based mapping. Figure 1.2 presents a comparison between

the above mentioned options for geometry mapping.

Over the past couple of decades several immersed boundary methods have been pro-

posed to obtain an accurate representation of a deforming material geometry in absence of

a conforming mesh. Also, approximation of the response along boundaries has been shown

to converge to the approximations using body-fitted meshes. Furthermore a crisp represen-

tation of the material geometry facilitates robust enforcement of boundary conditions along

the material geometry. Immersed boundary methods involve resolving a physical system on

a fixed (Eulerian) grid with the geometry of the immersed body defined using Lagrangian

markers. As shown in Figure 1.2 although the discretization of the design domain is fixed,

the change in location of the structural boundary is clearly captured. The term ”immersed

boundary method” was first used in reference to an approach developed in [102] for simulat-

ing cardiac mechanics and associated blood flow on a fixed finite difference (FD) grid. Since

then the concept of immersed boundaries has been extended to finite volume (FV) methods
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(a) Lagrangian approach us-
ing a conforming mesh.

(b) Eulerian approach using
an immersed boundary.

(c) Eulerian approach using
density-based mapping.

Figure 1.2: Examples of geometry mapping undergoing shape change.

[87, 104] as well as FEM [40, 120]. In the context of topology optimization we focus on

immersed boundary methods for FEM. Various immersed boundary methods for FEM have

been proposed in the literature such as the generalized finite element method (GFEM) [120],

the extended finite element method (XFEM) [88], and the finite cell method (FCM) [101].

1.2 Motivation

Owing to it’s popularity over its counterparts this thesis focuses on the use of the

XFEM for topology optimization. The XFEM extends the standard FEM by enriching the

solution space to capture discontinuities in either the state variables or their spatial gradients
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within an element. Various options for constructing the enriched solution space exist, an

overview of which has been provided in [40]. Section 1.4.2 provides a detailed discussion on

the XFEM approach adopted in this thesis. The LSM-XFEM has been successfully applied

to a wide range of design and optimization problems involving a variety of physics such as

incompressible Navier-Stokes [65, 112], heat diffusion [68], linear elasticity [71, 129], fluid-

structure interaction [42, 56], natural convection [24], dendritic solidification [138], damage

[91], and contact mechanics [72], among others. In the context of topology optimization the

LSM-XFEM approach is often classified as a generalized shape optimization approach [32].

This classification stems from the fact that the approach allows for topology modifications

as existing holes can merge or disappear. Notwithstanding the extensive research on LSM-

XFEM, the approach is less than two decades old and continues to present many interesting

challenges limiting its applicability to topology optimization problems. The open topics

associated with LSM-XFEM in the context of topology optimization can be divided into

three broad categories as discussed below:

(i) Response related: This category concerns areas of research that influence directly

the analysis of the physical problem, and thus concern design using XFEM. Some of

the major open topics in this category are:

(a) Numerical behavior of shape sensitivities. Shape sensitivities quantify the ef-

fect that a change in shape has on the response of the design. Shape sensitivity

analysis in general comprises of computing the derivative of a response function

(e.g. strain energy, stress, perimeter, etc.) with respect to parameters describing

the domain geometry [114]. Naturally shape sensitivities are important to de-

termining the outcome of the optimization process. However, literature focusing

on shape sensitivities using the XFEM is sparse. An analytical sensitivity study

to address material-material interface problems in multi-component system was

presented in [139] wherein the sensitivities are derived from a material-material
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interface model. More recently in [92] an analytical approach to performing

sensitivity analysis for shape optimization of bi-material structures was devel-

oped. Like the studies mentioned above, other studies on XFEM-based shape

or topology optimization usually present an approach to computing the shape

sensitivities without any discussion on the numerical behavior of shape sen-

sitivities. Consequently questions concerning the smoothness and robustness

of shape sensitivities computed using the XFEM have not been answered yet.

Furthermore the influence of discretization of geometry using the XFEM on

shape sensitivities has not yet been investigated.

(b) Overestimation of stresses. Stress-based topology optimization has garnered

the attention of many researchers as accounting for stress measures allows to

design engineering structures based on strength of materials. Overestimation

of stresses using the XFEM has been a long standing issue. In the XFEM, a

material interface too close to a node can lead to small intersected areas. These

small regions present vanishing zones of influence for certain degrees of freedom.

Aside from adversely affecting the condition number of the system, small inter-

sections can result in uncontrolled displacement gradients across element edges

leading to localized stress peaks (Section 2.1) and inaccurate stress sensitivities

(Section 3.3) which can further affect the outcome of the topology optimization

process. For a nonlinear structural model inaccurate displacement gradients

can affect the stability of the system of equations. Improving stresses in the

vicinity of a singularity such as a crack-tip has been a widely studied topic

[107, 135]. However, these studies are specific to open interfaces (cracks usually

end inside a domain). Little work has been focused at improving the predic-

tion of stresses resulting from small intersection areas due to closed material

interfaces. One of the first studies to bring this issue to light was [127]. They
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highlighted the problem of overestimation of stresses resulting from extremely

small (or large) ratios of intersected areas in an intersected element. To main-

tain the accuracy of the computed stresses, strategies such as elimination of

small intersections by shifting the material interface were suggested. Recently

in [106] to circumvent the problem of overestimation of stresses, elements with

small intersection areas were ignored from the finite element analysis. Addi-

tionally, stresses were post-processed using the patch recovery method of [147]

to give smoothed stress values at the nodes. In [90] an area weighted smooth-

ing was performed to post-process stresses associated with intersected elements.

However as mentioned in [90], the approach does not ensure elimination of over-

estimated stress values. Recently the B-spline Finite Cell Method was used to

achieve a high-order continuity and stress accuracy along cell boundaries [19].

Low-order finite elements, given their simplicity and ease of implementation are

the most popular choice of interpolation for topology optimization problems.

The influence of small intersection areas on the accuracy of spatial gradients

is aggravated when using low-order elements. The literature currently lacks

a robust approach for accurately predicting stresses in the vicinity of small

intersections using low-order XFEM.

(c) Consistent integration in time. Temporally evolving geometries are frequently

found in the real world and are relevant in many engineering applications such

as additive manufacturing, wind turbines, etc. The XFEM is particularly useful

in these applications as it is able to resolve discontinuities such as phase change

and fluid-structure interaction in the problem domain. The temporally evolving

structural geometry can be easily tracked implicitly using the LSM. Majority

of XFEM-based studies involving time dependent geometry ignore the time

dependency of enrichment formulations by using a semi-discretized approach
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wherein the temporal integration is performed using finite differencing. As dis-

cussed in [22], this introduces some ambiguities since the approximation space

varies due to the time dependence of the enrichment function. As a result the

appropriate choice of the approximation spaces for the test and trial functions is

not clear. The discontinuous Galerkin space-time approach in [23] provides in-

sight into the appropriate choice of the test and trial functions for semi-discrete

approaches. In [39] an approach was introduced requiring the evaluation of

enrichment functions on the current and previous time step. This approach

is stable only for weak discontinuities. In [53] an enrichment consistent time

integration scheme for the problem of premixed combustion in 2D and 3D was

developed. However, their approach made use of semi-Lagrangian techniques to

adequately handle time integration based on finite difference schemes. Recently

in [74] numerical studies applying space-time XFEM to multiphase problems in

3D space were presented. Space-time XFEM resolves consistently and robustly

all of the aforementioned issues. However, the study was restricted to meshes

constructed using hypertriangles. Inconsistent evaluation of the response of a

temporally evolving interface is bound to cause inconsistencies in the corre-

sponding transient sensitivity analysis for topology optimization. As a result

topology optimization problems involving temporally evolving geometry have

not yet been considered in the context of the XFEM.

(ii) Convergence related using the LSM: This category comprises of topics that are

related to the convergence of the optimization process using the LSM. Some of the

major open topics in this category are:

(a) Extremely localized sensitivities leading to slow design evolution. LSM-based

topology optimization is known to suffer from slow design evolution resulting

from localized sensitivities, as discussed in Section 4.2. Furthermore, the num-
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ber of design variable in traditional topology optimization frameworks scale

with the mesh density. A recently proposed concept of geometric primitives as

design variables [9, 47] provides a platform for alleviating these issues. Further-

more, geometric primitives as design variables allow for geometry information to

be directly incorporated into the topology optimization framework. This new

approach presents immense possibilities to improving the flexibility of LSM-

based topology optimization as further discussed in Section 4.2. The literature

however, is currently restricted to single material problems using linear elastic-

ity. In addition, unlike for node-based design variables [28] no regularization

approaches to ensure smooth material geometries have been investigated yet.

Non-smooth boundaries can significantly affect the shape sensitivities and as a

result the convergence of the optimization process as discussed in Section 3.2.

(b) Topological derivatives. Traditionally, LSM-based approaches are shape opti-

mization approaches as holes are allowed to merge and disappear but not reap-

pear. As a result the outcome of the shape optimization process depends on the

initial design. Consequently, the concept of topological derivatives [34, 117] has

been used to insert holes during the optimization process [17, 20, 41]. However

whenever a new hole is inserted, for all practical purposes a new optimization

problem is generated resulting in a discontinuous optimization process leading

to slow optimization convergence rates [28]. Furthermore, there is an inherent

decision making concern with the idea of topological derivatives. The question,

when should holes be inserted for an unbiased topology optimization, remains

largely unanswered.

(iii) Geometry related using the LSM: This category comprises of topics that are

related to the definition of the geometry in the context of LSM-based topology

optimization. Some of the major open topics in this category are:
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(a) Minimum feature size control. Controlling the minimum feature size of an

optimized design is important to ensure that the physics in the vicinity of the

feature is accurately resolved, and also to maintain practicality of the design

in regards to manufacturing. There has been extensive research performed to

control the minimum feature size in LSM-based topology optimization. For

instance in [21] a quadratic energy functional is incorporated in the objective

function for shape feature control. In contrast in [48], control of component

length scale was achieved using a structural skeleton method based on the

sign distance information. For an overview of existed techniques for feature

size control in the context of LSM-based topology optimization, the interested

reader is referred to the comprehensive review in [80]. Notwithstanding the

extensive research performed to control the minimum feature size, the concept

continues to suffer from an inherent decision making issue. The question when

should the feature size control be enforced is yet unanswered. As one can

imagine if always enforced, the feature size control will prevent any holes from

merging and thus prevent any changes in the design topology.

(b) Controlling the gradient of the LSF. The ability to represent changes in geome-

try using LSM-based topology optimization can deteriorate when the magnitude

of the spatial gradient of the LSF along the material interface becomes too flat

or too steep. Too steep of an LSF will result in significantly diminished sensi-

tivities leading to a small change in material geometry for relatively significant

changes in the LSF. In contrast, too flat of an LSF will result in magnified

sensitivities leading to large changes in material geometry for relatively small

changes in the LSF. The most popular approach for resolving this issue in-

volves solving a convective level set re-initialization equation [97] to produce a

signed-distance LSF (∇φ = 1 everywhere), see e.g [4, 132]. However, the major
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drawback with this approach is the fact that re-initialization of an LSF will

usually move the zero iso-contour introducing inconsistencies in the optimiza-

tion process [28]. Furthermore the re-initialization scheme is time consuming

given the fact that a convective equation needs to be solved frequently. Conse-

quently the issues of maintaining a sign distance LSF without having to solve

an additional equation remains an open topic, with recent efforts focusing on

incorporating the re-initialization information in either the level set governing

equation [146] or as part of the objective or constraint formulation [58].

The above topics list only a few of the many open topics associated with LSM-XFEM-

based topology optimization. While no review of open topics associated with XFEM-based

topology optimization has yet been performed, the interested reader is referred to the com-

prehensive review in [28] for an overview of open topics concerning LSM-based topology

optimization. Furthermore, the comprehensive review in [40] although a bit dated, is a good

read on methodological associated with XFEM.

Additional motivation of this thesis is unrelated to topology optimization, and con-

cerns purely XFEM-based design. Fabrication techniques even as precise as additive manu-

facturing are one of the primary sources introducing geometric uncertainty. Accounting for

geometric uncertainty is essential for realistic predictions of heterogeneous materials. Exam-

ples with geometric uncertainty include engineered composites and sintered materials among

others. The eXtended stochastic finite element method (X-SFEM) [95] was proposed to ex-

tend the XFEM to the stochastic domain using a polynomial chaos expansion (PCE) [136]

to approximate the degrees of freedom based on the random parameters characterizing the

geometry. The X-SFEM has previously been studied for problems with weak discontinuities

in the problem domain [70, 94, 95, 96]. In contrast to the intrusive concept of X-SFEM, a

non-intrusive approach combining XFEM with Monte Carlo simulation is studied in [54, 110]

for uncertainty quantification in homogenization of random heterogeneous media. However
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as widely known, non-intrusive approaches have limited flexibility in terms of a connection

with the physical problem. A generic framework in the literature is missing that can be used

for problems with either weak or strongly discontinuous solution in the problem domain.

1.3 Research goals and contributions

The primary goal of this thesis is to present recent advances made in the field of XFEM-

based topology optimization, with a secondary goal of presenting advances made in the field

of XFEM-based design. We do so by addressing some of the issues mentioned in Section 1.2.

Specifically, the research goals of this thesis are summarized through the following major

contributions of the current work:

(i) We aim to develop and study a robust approach to computing the shape sensitivities

using the XFEM. We investigate in detail the advantages and challenges that the

adopted approach poses to the computation of shape sensitivities via the adjoint

method, for both material-void and material-material problems. Through numeri-

cal examples we further study the dependency of the shape sensitivities on spatial

resolution and interface conditions. Furthermore we compare both numerically and

analytically, the XFEM-based shape sensitivities against shape sensitivities obtained

by the classical Lagrangian approach using a body-fitted mesh.

(ii) Focusing on the issue of overestimation of stresses using the XFEM, improving the

prediction of stresses presents another goal of this thesis. We adopt a recently

proposed fictitious domain approach [18] for penalization of displacement gradi-

ents across element faces surrounding the material geometry. In addition, a novel

XFEM informed stabilization scheme is proposed for robust computation of stresses.

Through numerical studies the penalized spatial gradients combined with the stabi-

lization scheme is shown to greatly improve prediction of stresses and stress sensitiv-

ities along the material geometry. The proposed approach is applied to a benchmark
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topology optimization problem in 2D and 3D using linear and hyperelastic materials,

for single phase as well as multiphase designs.

(iii) Building on the work in [47, 93] we aim to demonstrate how to perform 3D XFEM-

based topology optimization using geometric primitives. An assemblage of geometric

primitives can result in a final structure with irregular surface along the boundaries.

This feature is unattractive from an analysis and manufacturing point of view. Fur-

thermore a non-smooth representation of the material geometry can cause issues in

convergence of the optimization process as discussed in Chapter 4. We resolve this

issue by introducing an anisotropic filter for smoothing along structural boundaries.

Single and multiphase steady state and transient examples are presented using the

proposed approach.

(iv) Unrelated to topology optimization, but in consonance with the objective of this the-

sis to present advances in design using the XFEM, we propose an approach to model

problems with either a weak or a strong discontinuity across a random material in-

terface. The work presented in this thesis constitutes only a part of the research on

XFEM-based design of geometric uncertainty presented in [69]. The specific contri-

bution of this thesis pertains to the development of ”active stochastic subdomains”

as discussed in Section 2.2. The convergence and accuracy of the proposed method

is demonstrated using problems with continuous and discontinuous solutions in the

problem domain.

1.4 Theoretical background

This section discusses our choice of technique for describing the material geometry,

followed by our choice of immersed boundary technique associated with the design and

optimization studies performed in this thesis. We further present and discuss our framework

for performing topology optimization in the current study. Figure 1.3 presents an overview
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of the tools used.

Optimization

Problem

• Conforming mesh

• Immersed boundary methods

• Density-based methods

• Gradient-based methods

• Gradient-free Methods

• Density based methods

• Level set method (LSM)

Design Analysis

Geometry Description

Search 

Strategy

Sensitivity 

Analysis

• Adjoint method

• Direct method

• Finite

Difference

Shape 

Derivatives

Geometry 

Mapping

Treatment of 

Design 

Variables

• Classical FEM

• Immersed boundary methods

Figure 1.3: Design and optimization model.

1.4.1 Geometry description

Over the years researchers have used various strategies to define the geometry of mate-

rial domains. Classical approaches for parametrization of shapes were either based on CAD

models or were CAD-free, both of which provide an explicit representation of the material

geometry. CAD models include the use of Bézier curves, B-splines, and NURBS for the rep-

resentation of material geometry [14, 49]. CAD-free parametrization involves describing the

material geometry directly using finite element meshes as described in [36, 62]. In contrast

to explicit boundary representations, Level set Methods (LSM) [98] present a framework

for defining the material boundaries implicitly by iso-contours of a level set function (LSF).

Moreover, LSM allows for a convenient treatment of topological changes as shown in Figure
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1.4. As with explicit approaches mentioned above, an LSF presents crisp description of the

boundaries. The LSM due to its ability to handle complex shapes (Figure 1.5) along with

its ease of implementation, has been naturally associated with immersed boundary methods

[19, 40]. We thus employ the LSM to describe the material geometry in this thesis.
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Figure 1.4: LSM description of merging inclusions: n dimensional circular bodies (left); n+1
dimensional LSF (middle); Iso-contours of the LSF (right).
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Figure 1.5: Complex geometry representation using an LSF: Shell structure supported by
truss members(left); Interwoven fibers of a composite (right).

The LSM uses an n+ 1 dimensional LSF, φ(x ), to describe the surface geometry, Γ12,

of an n dimensional body, Ω2, immersed in a domain, Ω1. Considering a two-phase problem,

the material layout can be defined using an LSF as follows:

φ(x ) < 0 ∀ x ∈ Ω1,

φ(x ) > 0 ∀ x ∈ Ω2,

φ(x ) = 0 ∀ x ∈ Γ12.

(1.1)

The surface geometry Γ12 = ∂Ω1 ∩ ∂Ω2 represents the interface between the two phases, and

is represented by the zero iso-contour contour in this thesis. Each phase may represent a

different material or a different physics. Multiple LSFs can be combined using min/max func-

tions to present a single LSF. As an example in Figure 1.4, merging of two bodies is depicted

using a continuous LSF. The continuous LSF is generated by blending two separate LSFs

using a differentiable form of the min/max function such as the Kreisselmeier-Steinhauser

(KS) function [64]:

φ(x ) =
1

β
ln
(
eβφ1(x ) + eβφ2(x )

)
, (1.2)

where the factor β controls the sharpness of approximating the maximum of the LSFs, φ1(x )
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and φ2(x ). The LSFs describe a circle of radius ri centered at x ci :

φi(x ) = ri − |x − x ci | . (1.3)

Another popular approach to combining LSFs is through p-norm functions.

Multiple functions can be used to model more than two phase regions. The use of

multiple LSFs originated in image processing [128]. The concept is popularly referred to as

the color LSM, and requires m LSFs to model n = 2m different phase regions [131]. The

work of this thesis however is restricted at the most to two-material problems, and therefore

only one LSF is used at any instance. Although the current work makes use of the LSM for

tracking the geometry, it is also applicable to other approaches mentioned above for defining

the design geometry.

1.4.2 Geometry mapping and modeling the physical response

Mapping the material geometry to a mechanical model is performed through either a

Lagrangian (deforming mesh) or an Eulerian (fixed mesh) approach. Most popular ways to

map the geometry using an LSM include conforming discretization (Lagrangian approach),

density-based mapping (Eulerian approach), and immersed boundary methods (Eulerian ap-

proach). Figure 1.2 provides a comparison of different mapping approaches as the design

domain undergoes a shape change. A key advantage of Eulerian approaches [40, 101, 120]

over a Lagrangian approach is that the finite element mesh does not need to be updated to

track the material geometry. Density-based mapping suffer from challenges of smeared and

jagged material geometry, e.g. as shown in Figure 1.2. Therein the material geometry is

projected onto a finite element mesh using a density distribution with the material geom-

etry represented by jagged gray elements. In contrast immersed boundary approaches use

Lagrangian markers (also referred to as intersection points) for a clear representation of the

material geometry as shown in Figure 1.2.

From a modeling standpoint immersed boundary approaches are attractive when treat-
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ing discontinuities in the problem domain (e.g. cracks, holes, or interface between two materi-

als) or when the material geometry is dynamically evolving and requires frequent re-meshing

which can be computationally expensive. As a result immersed boundary methods have

found widespread use in applications such as multiphase problems [75, 138] and topology

optimization [28, 76, 129]. Furthermore, immersed boundary methods have been shown to

converge to the classical FEM solution upon spatial refinement [40].

This thesis adopts the eXtended Finite element Method (XFEM), an immersed bound-

ary method developed in [88] based on the partition of unity method [8], to map the material

geometry and model the physical response of the mechanical problem.

The XFEM uses an enrichment function to locally capture the non-smooth solution

of state variable fields along the material interface, without requiring a conforming mesh.

Depending on the type of discontinuity various enrichment strategies have been developed as

described in [40]. Following the work in [52, 124] we adopt a generalized Heaviside enrichment

strategy with multiple enrichment levels. The use of multiple enrichment levels ensures that

the solution field is interpolated in a consistent manner, and avoids any artificial coupling

in the presence of disconnected phases as discussed in [82, 126]. The Heaviside enrichment

is a step enrichment and is discontinuous by construction, making it preferable for problems

involving strong discontinuities such as material-void problems. For C0-continuous problems,

the continuity in the solution is enforced through stabilized Lagrange or Nitsche methods

[118]. Intuitively the discontinuous nature of the Heaviside enrichment function is expected

to affect the smoothness of the physical response and corresponding shape sensitivities as

further discussed in Chapter 3.

For a two-phase problem the approximation of a solution field, u(x ), denoted as û(x ),

using the Heaviside-enriched XFEM is given by

û (x ) =


∑Ψ

e=1

(∑
i∈I Ni(x )u1

i,eδ
1,i
el

)
if x ∈ Ω1

∑Ψ
e=1

(∑
i∈I Ni(x )u2

i,eδ
2,i
el

)
if x ∈ Ω2,

(1.4)
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Figure 1.6: Heaviside-enriched XFEM framework in 1D: Interpolation of solution field using
generalized Heaviside enrichment (top); Mapping of integration domains for an intersected
element (bottom).

where I is the set of all nodes in the finite element mesh, Ni(x ) is the nodal basis function

associated with node i, Ψ is the maximum number of enrichment levels and um
i,e is the vector

of degrees of freedom at node i for phase m ∈ (1, 2). The Kronecker delta δm,iel selects the

active enrichment level, l, for node i and material phase m such that only one set of degrees

of freedom is used for interpolating the solution at any given point, x in Ω, thereby satisfying

the partition of unity principle.

Figure 1.6 presents an intersection configuration comprising of two linear finite elements
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in 1D. Basis functions, Ni, have been plotted over each element. Below each node, the active

set of degrees of freedom have been stated corresponding to (1.4). Nodes 1 and 3 belong to

material phase 1 whereas node 2 belongs to material phase 2. Nodes 1 and 3 interpolate

in each material phase using only one degree of freedom per phase. Node 2 interpolates in

material phase 2 using one degree of freedom. For a consistent interpolation in phase 1, node

2 requires two degrees of freedom as the support of N2 includes two disconnected regions of

material phase 1. Figure 1.8 presents an intersection configuration depicting the active set of

degrees of freedom corresponding to a single finite element in 2D. For a more comprehensive

understanding of the adopted enrichment strategy the reader is referred to the study in [82].

The Heaviside-enriched XFEM requires integrating the weak form of the governing

equations separately in each material phase. Thus an element intersected by the zero level

set contour is subdivided as shown in Figure 1.6. In 2D and 3D we perform this subdivision

using Delaunay triangulation [59]. Integration over these subdivisions requires identification

of three distinct configurations. Figure 1.6 presents the mapping between these configura-

tions for an intersected element in 1D. An element in the global coordinate system (Elemental

Configuration) is mapped to an element in its natural coordinate system (Natural Config-

uration) with coordinates ranging between ξ0
1 = −1 and ξ0

2 = 1. The subdivided elements

in the Natural Configuration are further mapped to integration subdomains (Integration

Configuration) with coordinates for each subdomain ranging between ξ′ = −1 and ξ′ = 1.

The solution field, û, can then be approximated using 1D maps based on e.g. a linear inter-

polation scheme as detailed in Section 3 of Appendix B. Figure 1.8 presents a mapping of

intersection configuration domains in 2D.

The generalized Heaviside enrichment strategy requires that the material interface does

not intersect a node. This is achieved by shifting the material interface, xΓ, when the interface

comes within a critical distance of a node, referred to as the critical shift distance, xΓc . The

interface is shifted such that the new interface position is at a distance, xΓc from the node.

Various options for shifting the material interface are possible as presented in Section 3 of
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Appendix B. In this thesis we perform a Phase 1 Shift (P1S), such that upon shifting xΓ,

the previously intersected node lies in phase 1. Figure 1.7 presents a schematic depicting

the change in intersection configuration when performing the interface shift. The shape

sensitivities are then evaluated taking the material shift into account. Effects of shifting

the material interface on the physical response and its sensitivities are examined in detail in

Section 5.1.2 of Appendix B.
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Figure 1.7: Interface shift schematic.

The LSF is mapped onto the XFEM mesh by evaluating the parametrized LSF at the

nodes. Standard bilinear and trilinear shape functions, in 2D and 3D respectively, are used

to interpolate the level set value in an element. These shape functions permit an element

edge to be intersected by the material interface, i.e. φ(x ) = 0, at most once. Lines and faces

in 2D and 3D respectively, connecting the edge intersection points, xΓ, define the material

interface within a finite element as shown in Figure 1.8.

In the physical modeling community the XFEM has previously been used in [42, 86, 109]

among others to model multiphase problems. In the topology optimization community the

LSM-XFEM approach is often classified as a generalized shape optimization approach [32].

As mentioned earlier, this classification stems from the fact that the approach allows for

topology modifications resulting from merging or disappearing of holes. The LSM-XFEM

approach has been used in the context of shape and topology optimization in [47, 65, 76, 133]

among others.
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Figure 1.8: Heaviside-enriched XFEM framework in 2D: Interpolation of solution field using
generalized Heaviside enrichment (top); Mapping of integration domains for an intersected
element (bottom).

1.5 Physical models of interest

This section presents the physical models used for performing the numerical studies

discussed in Chapters 2, 3, and 4. Namely, the variational form of the governing equations

for unsteady diffusion, thermo-coupled static linear elasticity, and static hyperelasticity are

presented. All materials are assumed to be isotropic. We use the model problem depicted

in Figure 1.9 to present the variational form of the governing equations.

We adopt the standard Galerkin approach in defining the solution spaces U = U1×U2,
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Figure 1.9: Schematic of the model problem.

U = U1 × U2 and the weighting spaces V = V1 × V2, V = V1 × V2, such that

Um =
{
Tm ∈ H1 (Ωm); Tm= TD on ΓmD

}
,

Vm =
{
ζm ∈ H1 (Ωm) ; ζm = 0 on ΓmD

}
,

Um =
{
um ∈ H1 (Ωm); um= uD on ΓmD

}
,

Vm =
{
υm ∈ H1 (Ωm); υm= 0 on ΓmD

}
,

(1.5)

where Tm and um, are the restriction of the temperature and displacement field respectively

to Ωm. Further, ζm and υm are the temperature and displacement weighting functions re-

spectively. The spaces U and V are Hilbert manifolds consisting of scalar functions with

square integrable first derivatives, whereas the spaces U and V are Hilbert manifolds con-

sisting of vector functions with square integrable first derivatives.

The weak form for the unsteady heat diffusion equations augmented with Nitsche’s

method [60, 118] to satisfy continuity of temperature and flux across the interface, is: Find

Tm ∈ Um

RD = RD
Ω +RD

ΓN
+RD

Γ12
= 0 ∀ ζm in Vm, (1.6)

whereRD
Ω is the residual of the volumetric contribution,RD

ΓN
is the residual contribution from

the Neumann boundary, and RD
Γ12

is the residual contribution from the interface conditions.



www.manaraa.com

24

These residual contributions are given by

RD
Ω =

∑
m=1,2

∫
Ωm

(
ρC

∂Tm

∂t
−∇ζm · (km∇Tm)

)
dx ,

RD
ΓN

=
∑
m=1,2

∫
ΓmN

ζm qN dx ′,

RD
Γ12

=−
∫

Γ12

[[ζ]] {k∇T} · nΓ dx
′ −
∫

Γ12

{k∇ζ} · nΓ [[T ]] dx ′ +

∫
Γ12

γΓ [[ζ]] [[T ]] dx ′,

(1.7)

where ρ, C and km are the density, heat capacity, and isotropic thermal conductivity respec-

tively. A heat flux, qN , is specified on the Neumann boundary, ∂Ωm
N , with an outward normal

n . The integrals
∫
χ
dx and

∫
χ
dx ′ denote operation on χ ⊂ Rd and χ ⊂ Rd−1 respectively.

In this thesis we consider numerical examples based on linear elasticity as well as

thermo-elsatic coupling. For brevity we present only the weak form for thermo-coupled

static linear elasticity. The weak form herein is also augmented with the Nitsche’s method,

to satisfy continuity of displacement and traction across the interface in material-material

problems. The weak form is stated as: Find u ∈ Um such that

RE = RE
Ω +RE

ΓN
+RE

Γ12
= 0 ∀ υ ∈ V . (1.8)

The above residual contributions are given by

RE
Ω =

∑
m=1,2

∫
Ωm
ε(vm) : σ(um, Tm) dx ,

RE
ΓN

=−
∑
m=1,2

∫
ΓmN

υm tN dx ′,

RE
Γ12

=−
∫

Γ12

( [[υ]]{σ(u), Tm} · nΓ − {σ( υ)} · nΓ[[u ]] + γΓ[[υ]][[u ]] ) dx ′.

(1.9)

The traction, tN , is specified on the Neumann boundary, ΓmN . The Cauchy stress tensor, σm,

accounting for thermal expansion is defined using the constitutive model

σm = Dmεm = Dm

(
1

2

(
∇um + (∇um)T

)
− αm(Tm − Tref )

)
, (1.10)

where Dm is the fourth order constitutive tensor for the isotropic material belonging to ma-

terial phase m, and εm is the infinitesimal strain tensor. The thermal expansion is accounted
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for based on the reference temperature Tref , for a coefficient of thermal expansion given by

αm.

The jump and averaging operators in (1.7) and (1.9) are defined as [[]] = (·)2− (·)1 and

{·} = γ1{·}1 + γ2{·}2 respectively. The constants γ1, and γ2 are referred to as weighting

parameters. The definition of the penalty parameter, γΓ, is associated with definition of the

weighting parameters so as to provide stability to the method [5]. The weighting parameters

along with the penalty parameter determine the accuracy with which the interface conditions

are satisfied. Various approaches for defining the weighting parameters have been proposed

in literature. The classical Nitsche’s method involves using an equal weighting [30] such that,

γ1 = γ2 = 0.5. (1.11)

However, in presence of small intersections or large values of km (or Em) this approach will

result in unusually large estimates of the penalty parameter γΓ [5]. An extremely high penalty

can lead to poor conditioning of the underlying system of equations. To increase robustness

by varying the weighting parameter with the element size, in [6] a volume weighted definition

of the weighting parameters was suggested such that,

γm =
meas(Ωm)

meas(Ω1) +meas(Ω2)
. (1.12)

A smarter choice for weights was presented in [5] where the weighting parameters assumed

the form,

γm =
meas(Ωm)/Ξm

meas(Ω1)/ Ξ1 +meas(Ω2)/Ξ2
, (1.13)

where Ξ is the thermal conductivity in (1.7) and Young’s modulus in (1.9). The above

formulation in addition to accounting for the small intersection areas, further accounts for

material differences across the material interface. Following the work in [5] we define the

penalty parameter as

γΓ = 2 cΓ
meas(ΓAB)

meas(Ω1)/Ξ1 +meas(Ω2)/Ξ2
. (1.14)
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The user defined penalty cΓ determines how strongly the interface constraints are enforced.

A high value of cΓ ensures better enforcement of the interface conditions, but as mentioned

above may lead to poor conditioning of the underlying system of equations. The influence

of cΓ on the shape sensitivities is discussed in Section 5.1.1. of Appendix B. The operator

meas(·) refers to the Lebesgue measure of the respective quantity.

We also consider solid-void problems considering finite strains using the Saint Venant-

Kirchhoff hyperelastic model. The hyperelastic model involves solving for the vector dis-

placement field, u(x ), in Ω1. Phase 2 is void of any material. Within the context of material

nonlinearity, equilibrium is formulated with respect to a reference undeformed configuration

and the weak form is stated as: u1 ∈ U1 such that

RH = RH
Ω +RH

ΓN
∀ v 1 ∈ V1. (1.15)

Here RH
Ω is the residual of the volumetric contribution and RH

ΓN
is the residual contribution

from the Neumann boundary. These contributions are given by:

RH
Ω =

∫
Ω1

0

F (v 1) : P(u1) dx ,

RH
ΓN

= −
∫

Γ1
N 0

v 1 tN dx ′.
(1.16)

The traction, tN , is specified on the Neumann boundary, Γ1
N 0. The subscript ‘0’ refers to

entities defined in the undeformed configuration. The deformation gradient, F , accounts

for the motion of the spatial coordinate in the deformed configuration, x 1, with respect

to the spatial coordinate in the undeformed configuration, x 1
0. We consider single-phase

hyperelastic problems wherein the displacement or traction are not required to be continuous

across the material-void interface. Hence no interface conditions are enforced.

1.5.1 Topology optimization

Topology optimization is a well established computational approach to mathematically

optimize the layout and the geometry of a body based on a physical design problem. The



www.manaraa.com

27

method is popular for its ability to generate lightweight mechanical components for the

automotive, aerospace, and medical industries, and has emerged as a promising approach

to utilize the benefits of additive manufacturing [16, 83, 89]. Topology optimization allows

radical changes in both the shape of the body and the material geometry within the body

as shown in Figure 1.10. This chapter provides an introduction involving the basic concepts

surrounding topology optimization.

? Topology optimization

Initial structure Optimized structure

Figure 1.10: A structure undergoing topology optimization to increase stiffness of the struc-
ture subject to volume constraint.

Topology optimization problems considered in this thesis, for instance for static linear

elasticity, are mathematically expressed as:

minimize
s

Z(u(s), s)

subject to gi(u(s), s) ≤ 0; ∀i = 1.....ng

(1.17)

where Z, gi define the objective and inequality constraints respectively. The vectors u

and s represent the vector of state and design variables respectively. In addition to the

constraints listed in (1.17) we make use of box constraints to bound the design variables

such that smink ≤ sk ≤ smaxk for k-th design variable. A formulation such as the one in

(1.17) where only the design variables are independent, is referred to as Nested Analysis and
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Design (NAND) approach [7]. In this case the vector of state variables u is computed for a

given vector of design variables s obtained by solving the vector of residuals of the governing

equations (Section 1.5) R = 0 of the underlying physics.

The choice of design variables s is highly problem and framework dependent. For in-

stance density-based methods employ artificial elemental densities as design variables. The

material properties are then parametrized using material interpolation functions such that

most of the intermediate density values are penalized [115]. Downsides associated with

density-based topology optimization include fuzzy boundaries and inaccurate response along

material boundaries as discussed in Section 1.1. Level set methods on the other hand employ

the material boundary [4, 132, 133] or nodal level set values [90, 129] as design variables.

Similar to density-based methods [116] LSMs also require regularization techniques to ob-

tain a well-posed optimization problem, to remove numerical artifacts and to improve the

convergence of the optimization problem [27, 82, 132]. A relatively new class of topology

optimization problems involve the use of geometric primitives as design variables. These

geometric design variables are mapped to a density field [93] or an LSF [47] for defining the

material layout during the optimization process. Compared to the traditional element or

node-based design optimization framework, the proposed approach can incorporate more ge-

ometry information into topology optimization with the shape sensitivities directly related

to the definition of the geometric primitives. In the context of LSM-XFEM-based topol-

ogy optimization, this thesis focuses on the use of nodal level set values (Section 4.1) and

geometric primitives (Section 4.2) as design variables.

The update of the design variables in LSM-based topology optimization can be dis-

tinguished using two major categories. The first category treats the optimization process

as a quasi-temporal process involving the solution of a Hamilton-Jacobi equation [122] for

describing the evolution of the LSF based on a design velocity field, e.g. in [1, 137]. The

velocity at the material boundary is typically derived from variational shape sensitivity anal-

ysis, and then extended to the rest of the domain [28]. The second category for updating
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design variables involves mathematical programming wherein shape sensitivities are related

directly to the optimization variables s , e.g. in [90, 129]. This work uses the latter approach

to avoid the unnecessary cost of solving an additional partial differential equation in the

form of the Hamilton-Jacobi equation.

1.5.1.1 Optimization algorithms

Optimization algorithms can be grouped into categories of gradient-free (black-box)

and gradient-based methods. As implied by the name, the former do not rely on gradient

information and therefore have no requirement for continuity/differentiability of Z or gi.

This makes them well-suited for discrete problems, i.e. problems where the design variable

can only have discrete values such as the number of hinges in a structure. Some of the popular

gradient-free optimization algorithms are simulated annealing [81], genetic algorithms [84],

and branch and bound methods [67]. Although easy to implement gradient-free methods are

restrictive with respect to the dimension of the design space i.e. a large number of design

variables lead to a rapid escalation of computational costs [63]. Given the possibility of high

number of design variables in topology optimization [35] gradient-free methods are not the

preferred choice.

In contrast gradient-based algorithms are a more viable tool given their efficiency

in handling large number of design variables [149]. These algorithms use the derivative

information to guide the search process. As a result, the optimization studies presented

in this thesis are restricted to problems with continuous and differentiable objective and

constraint functions. Most physical phenomena are modeled by a set of partial differential

equations resulting in nonlinear objective functions and constraints. Consequently this work

employs gradient-based algorithms for continuous nonlinear constrained optimization. Some

of the most popular optimization algorithms in this class include interior point methods

[134] and sequential quadratic programming (SQP) [43]. In the current study the globally

convergent method of moving asymptotes (GCMMA) [123] is employed, which was developed
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with structural optimization in sight. In the current thesis the GCMMA parameters values

controlling the adaptation of the initial, lower and upper asymptotes are 0.5, 0.7, and 1.43

respectively.

1.5.1.2 Sensitivity analysis

When using gradient-based algorithms for optimization problems, the implementation

of a sensitivity analysis is imperative. Ways to calculate the shape sensitivities include finite

difference, the direct, and the adjoint method. The main advantage of the finite difference

method lies in its trivial implementation. However finite differences gets very costly as it

requires solving the system of equation twice (assuming central finite difference) for every

design variable sk. The computational cost of finite differences can turn out to be very

high as several analyses of the physical problems are necessary. We thus shift our focus to

sensitivities computed using the direct and adjoint approach.

The derivative of the objective function Z in (1.17) can be decomposed using the chain

rule to give

dZ(u(s), s)

dsk
=
dZ
dsk

+

(
∂Z
∂u

)T
∂u

∂sk
. (1.18)

Similarly the derivative of the residual of governing equations can be decomposed using the

chain rule to give

dR(u(s), s)

dsk
=
∂R
dsk

+
∂R
∂u

∂u

∂sk
. (1.19)

Solving for ∂u/∂sk in (1.19) we have,

∂u

∂sk
= −

(
∂R
∂u

)−1
dR
dsk

. (1.20)

Solving (1.20), followed by substitution in (1.18) gives us the direct approach to computing

sensitivities

dZ(u(s), s)

dsk
=
dZ
dsk
−
(
∂Z
∂u

)T (
∂R
∂u

)−1
dR
dsk

. (1.21)

In contrast the adjoint approach avoids direct evaluation of the implicit part in (1.18):
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dZ(u(s), s)

dsk
=
dZ
dsk
− λT dR

dsk
;

(
∂R
∂u

)T
λ =

∂Z
∂u

. (1.22)

As is evident from (1.21) the direct method requires number of linear solves equal to the

number of design variables while the adjoint method requires number of solves equal to the

number of objective and constraint functions. If the number of design variables is small

relative to the number of objective and constraints, the direct method is preferred. If the

number of design variables is large relative to the number of objectives and constraints

the adjoint method is computationally more efficient. As topology optimization problems

typically have a large number of design variables the adjoint method is employed in this

thesis for the computation of sensitivities. For transient problems not reaching a steady

state, sensitivity analysis can be thought of as an extension of (1.22) wherein the adjoint

states are computed by integrating the adjoint equations backward in time as detailed in [24].

The topic of shape sensitivities in context to Heaviside-enriched XFEM is further discussed

in Chapter 3.

1.6 Structure of the thesis

The rest of the thesis is organized as follows: Chapter 2 presents the contributions

made towards advances in design using the XFEM; Chapter 3 analyses the behavior of shape

sensitivities using Heaviside-enriched XFEM; in Chapter 4 we present topology optimization

problems using the XFEM, employing nodal level set values and geometric primitives as

design variables. Appendix A, B, and C present the publications resulting from the work in

this thesis. Appendix D discusses the implementation of certain computational algorithms

relevant to the work in this thesis.

The chapters in the main body present moderately detailed highlights of the contribu-

tions of this thesis. The reader is appropriately referred to the publications in the Appendix

for further details and numerical examples as and when deemed necessary. Suggestions on
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future research are provided at the end of the discussion on every contribution along with

a brief outlook of the contribution made. It is important to point out that notations might

differ from one paper to another. Hence to maintain readability notations have been kept

consistent throughout the main body of the thesis. As a result notations in the main body

of the thesis may or may not be consistent with notations in the respective publications from

the Appendix.



www.manaraa.com

Chapter 2

Advances in Design

This chapter presents the advances made towards making the XFEM a more viable and

reliable tool for modeling real world physical phenomenon. Specifically, i) The longstanding

problem of inaccurate prediction of stresses in the context of immersed boundary methods

is addressed. ii) A framework is developed for modeling of heterogeneous materials with

uncertain inclusion geometry.

2.1 Gradient-stabilized stresses

Stress-based design optimization is integral to designing structures that take the strength

of materials into account. As a result over the past decade, there has been a growing interest

in the study of shape and topology optimization problems considering stress-based objectives

and constraints. For instance, recent advances in additive manufacturing has generated im-

mense interest for accurately modeling the process. Predicting residual stresses in additive

manufacturing is an integral part of the modeling process. Thus there has been immense

interest in computational modeling of residual stresses [29, 78, 85, 148]. Researchers have

simultaneously been focusing on developing optimization frameworks to introduce designs

that minimize development of undesirable residual stresses during the manufacturing pro-

cess. Immersed boundary methods such as the XFEM are naturally associated with additive

manufacturing given their ability to accurately model physics along the material interface

without the need for re-meshing. However as discussed in Section 1.2 the XFEM has a
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longstanding issue of overestimation of stresses. A material interface too close to a node can

lead to small intersection areas. These small regions present vanishing zones of influence

for certain degrees of freedom which can adversely affect the condition number of the sys-

tem, result in uncontrolled displacement gradients across element edges, and for a nonlinear

model may affect the stability of the system of equations. An overview of the efforts made to

resolve the issue of overestimation of stresses using the XFEM has been provided in Section

1.2.

Low-order finite elements, given their simplicity and ease of implementation are the

most popular choice of interpolation for topology optimization problems. The influence of

small intersection areas on the accuracy of spatial gradients is aggravated when using low-

order elements. To maintain stability of the system and ensure the convergence of stress

prediction with mesh refinement, we adopt the ghost penalty approach presented in [18] for

Stokes flow, and adapt it for linear and hyperelasticity.

2.1.1 Ghost penalty for stabilizing displacement gradients

Ω1 Ω2

ℱ𝑐𝑢𝑡 ∈ ℰ𝑐𝑢𝑡 ⊂ Ω2ℱ𝑐𝑢𝑡 ∈ ℰ𝑐𝑢𝑡 ⊂ Ω1

ΓAB Γ12 ΓAB

𝜕Ω

𝜕Ω

Figure 2.1: Stabilized faces in a two-phase problem.

We consider the set of element faces, Fcut, belonging to intersected elements, Ecut, as

shown in Figure 2.1. For each face, F ∈ Fcut, there exist two elements (one of which is the

intersected element itself), EA and EB, such that F = EA∩EB. The jump in the displacement
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gradients across this face is then penalized by augmenting the left hand side of (1.8) and

(1.15) with the following term.

RE
F = RH

F =
∑

F∈Fcut

∑
m=1,2

∫
F

γuhE
m [∇υm] [∇um] dx ′, (2.1)

where Em is the elastic modulus of phase m, and γu is a penalty parameter that determines

how strongly the gradients are penalized. The jump in the displacement gradient is defined

as [∇um] = nF · ∇um|EA − nF · ∇um|EB , where nF denotes the unit normal to the face,

F . For faces that are intersected jump in the displacement gradients is penalized for both

material phases. Note that only the jump of the displacement gradients in normal direction is

penalized. Alternatively the jump in the stresses (including presence of thermal expansion)

can directly be penalized by augmenting the left hand side of (1.8) and (1.15) with the

following term.

RE
F = RH

F =
∑

F∈Fcut

∑
m=1,2

∫
F

γuh [ε(υm)] [σ(um, Tm)] dx ′, (2.2)

The implementation of (2.2) for hyperelastic materials is not straightforward. This is due

to the complexity involved in the computation of the stiffness matrix associated with (2.2)

for a hyperelastic model. Furthermore (2.2) has not been studied formally in literature for

error and convergence properties unlike (2.1) was studied in [18]. We hence use (2.1) for all

stress stabilization studies in this thesis.

This face oriented stabilization of spatial gradients presents two advantages - i) Smooth

displacement gradients are obtained along the material interface. ii) The zone of influence of

degrees of freedom no longer vanishes because (2.1) requires integration over the entire face

independent of the location of the intersection. A drawback is that the framework results in

a non-smooth behavior of stresses as the material interface transitions from one element to

another. This is a result of the on/off nature of (2.1), and is discussed in detail in Section

5.1.3 of Appendix C. Since F = EA∩EB, by definition faces along the boundary of the mesh

are excluded from the set Fcut. A solution to this issue is padding the domain of interest

with dummy void phase elements as discussed in Section 4.1.
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2.1.2 XFEM informed smoothing of stresses

In addition to stabilizing the displacement gradients, in the current study we introduce

a scalar stress field, τ , using an XFEM informed smoothing procedure. Using the solution of

the displacement field we solve the following equation to obtain a gradient stabilized scalar

stress field in a Heaviside-enriched XFEM framework.

RS
Ω +RS

F = 0 ∀ η ∈ V =⇒∑
m=1,2

∫
Ωm

ηm (τm − S (um)) dx +
∑

F∈Fcut

∑
m=1,2

∫
F

γτ h [∇ηm] [∇τm] dx ′ = 0.
(2.3)

Here S is a scalar function of the components of the Cauchy stress tensor, e.g. axial stress,

principal stress, and von Mises stress, computed using the displacement fields, um. In the

present study S is the von Mises stress function. In presence of thermal expansion, S is

also a function of Tm. The smoothed scalar stress field is denoted by τm, with ηm being the

corresponding weighting function. The functions τm and ηm belong to Hilbert manifolds,

U and V respectively, consisting of scalar functions with square integrable first derivatives.

Note, the scalar stress field is computed using the displacement field subjected to ghost

penalty. Thus the ghost penalty terms in (2.3) provide a second level of spatial gradient

stabilization.

In comparison with an area weighted smoothing [90], the XFEM informed smoothing

ensures the avoidance of overestimation of stresses by penalizing the stresses across the entire

elemental face. However, like the area weighted smoothing the XFEM informed smoothing is

just a post-processing step. Section 2.1.3 provides comparison of the two approaches through

a numerical example.

2.1.3 Application to cantilever beam problem

Through this example we compare the accuracy of stresses computed using the pro-

posed approach. Comparisons are drawn against stresses computed using a body fitted mesh

as well as stresses computed using an area weighted smoothing. The problem setup consists
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Figure 2.2: Cantilever beam setup (top), and mesh h = 0.05m (bottom). Stresses are
monitored along the highlighted region. All dimensions are in m.

of a material-void 2D cantilever beam as shown in Figure 2.2. The beam is assumed linear

elastic with a Young’s modulus, E = 104N/m2, and Poisson’s ratio, ν = 0.3. The beam is

fixed along its left edge. A point load of P = 10N is applied at the bottom right corner of

the beam. Within the beam are two circular inclusions, each of radius r, centers of which

lie at x = (1, 0.5) and x = (2, 0.5). We monitor the stresses along the upper-half interface

of the circular inclusion centered at x = (2, 0.5).

With r = 0.4742m we investigate the accuracy of stresses along the material interface.

The value of r is chosen such that the interface configuration results in small intersection

areas for all mesh sizes used in the current example. Figures 2.3 and 2.4 plot the von Mises

stress, σvM , as a function of the central angle, θ, measured in degrees counterclockwise from

point A in Figure 2.2. The stresses are plotted for various mesh sizes, h, for different values of

stabilization penalty parameters, γu and γτ . These stresses are compared against a reference
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Figure 2.3: Stress (N/m2) profile along the material interface: Area weighted smoothing
(left), Area weighted smoothing with γu = 0.1 (middle), XFEM informed smoothing with
γu = 0, γτ = 0 (right).

Figure 2.4: Stress (N/m2) profile along the material interface: XFEM informed smoothing
with γu = 0.1, γτ = 10−4 (left), γu = 0.1, γτ = 10−3 (middle), and γu = 1.0, γτ = 10−2

(right).
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plot obtained using a body-fitted mesh of size h = 0.005m. The body-fitted solution was

converged for this mesh size. Area weighted smoothing with and without ghost penalty, as

well as XFEM informed smoothing without ghost penalty, i.e. γu = 0 and γτ = 0, result

in oscillatory stresses. Upon mesh refinement, these stresses do not converge to the body-

fitted solution as shown in Figure 2.3. In contrast stresses obtained using XFEM informed

smoothing of stress with ghost penalty (Figure 2.4) have a smoother profile along the interface

and converge with refinement in mesh. However, one should be careful with their choice of

gradient stabilization parameters. As expected and as shown in Figure 2.4 a large value of

the ghost penalty parameter smooths out the stresses extensively resulting in loss of stress

profile capturing ability. Based on results presented in Figures 2.3 and 2.4, for all stress-

based optimization studies performed in this thesis we chose γu = 0.1 and γτ = 10−4. Figure

2.5 further presents a comparison of stress field distribution for the intersection configuration

in Figure 2.2, between area weighted stresses and XFEM informed smoothed stresses with

γu = 0.1, γτ = 10−4.

von  Mises stress 

(N/m2)

201410009

von  Mises stress 

(N/m2)

83045013

Figure 2.5: Stress field distribution using: Area weighted smoothing (left) and XFEM in-
formed smoothing with γu = 0.1, γτ = 10−4 (right).

The effect of XFEM informed smoothing of stress on the sensitivity of stresses is



www.manaraa.com

40

discussed in Section 3.3. A detailed analysis of the stresses for the current problem setup is

performed in Section 5.1 of Appendix C wherein the robustness of the proposed approach

for computing stresses using immersed boundary methods with low order finite elements is

established.

2.1.4 Galerkin Gradient Least Squares Stabilization

High gradients within the same material phase may cause oscillations in the scalar

stress field. An example of such a scenario is the two-phase problem setup presented in

Section 5.4 of Appendix C. Therein to simulate a void the Young’s modulus of the material

is set to a very low value in the desired region. This change in Young’s modulus is not

gradual and happens over the span of a single element.

Employment of the Galerkin least squares (GLS) method does not resolve the above

issue since the least-squares form of (2.3) only contributes to L2-stability which is already

present in the Galerkin method. The Galerkin Gradient Least Squares Stabilization pre-

sented in [37] adds stability in the H1-seminorm thus providing control over the gradient of

the scalar stress field within the same material phase. Applying the GGLS requires adding

the following term to the left hand side of (2.3).

RE
GGLS = RH

GGLS =
∑
m=1,2

∫
Ωm
∇ηmγGGLS · ∇ (τm − S (um)) dx ; γGGLS =

h2

6
, (2.4)

where h is the background mesh size. Figure 2.6 presents a scenario wherein oscillations occur

in the scalar stress field resulting in -ve von Mises stresses away from the material interface.

The scenarios correspond to the stress distribution in Fig. 27b of Appendix C. Applying

the GGLS stabilization helped diminish these oscillations in the stress field. Note, results

presented in Appendix C are not influenced by stress field oscillations because they occur

in the dummy void region of the problem domain which is not a part of the optimization

process. Hence GGLS was not used for any of the results presented in Appendix C.
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Oscillations in stress field 

in absence of GGLS

von  Mises stress (N/m2)

0.380−0.12

Figure 2.6: Stress field distribution in absence (left) and in presence (right) of GGLS.

2.1.5 Outlook and future work

The issue of overestimation of stresses resulting from small intersection areas following

vanishing zone of influence of degrees of freedom is addressed. The ghost penalty method

prevents the influence of degrees of freedom from vanishing and provides stability to the

system of equations. However as shown through a numerical study, ghost penalty alone was

not sufficient in obtaining convergence of stresses along the material interface with refinement

in mesh. An XFEM informed smoothing in combination with ghost penalty provides a second

level of spatial gradient stabilization which was shown to be effective in eliminating stress

peaks and attain convergence with mesh refinement.

The proposed method for computation of stresses is an improvement over existing

methods. In its current framework stresses are non-differentiable as the material interface

transitions an element (see Section 5.1.3 of Appendix C). Future studies should focus on
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resolving this issue.

2.2 Modeling uncertainty in material geometry

Concerning XFEM-based design, this work pertains to the concept of the extended

stochastic finite element method (X-SFEM) which extends the XFEM to the stochastic do-

main using a polynomial chaos expansion (PCE) to approximate the degrees of freedom based

on the random parameters characterizing the geometry. Section 1.2 provides an overview

of research aimed towards modeling uncertainty in material geometry. As mentioned in

Section 1.2 the work presented in this section constitutes only a part of the research on

XFEM-based design of geometric uncertainty presented in [69]. The specific contribution

of this thesis pertains to the development of ”active stochastic subdomains” discussed in

Section 2.2.1. Following the development of active stochastic subdomains we investigate the

application of X-SFEM for problems with either a weakly or strongly discontinuous solution

at the random material interface using the Heaviside enrichment function.

X-SFEM Model

Geometric 

Uncertainty

Output

Distributions

XFEM + PCERandom Level Set

(e.g. based on 

images or data)

Statistics of the 

quantities of interest

Physical domain, 

𝒟
Probability/Stochastic 

domain, Ω

Figure 2.7: X-SFEM model.

The proposed X-SFEM approach is illustrated with a stochastic version (Figure 2.8)

of the model problem depicted in Figure 1.9. The model problem contains an inclusion with

uncertain geometry embedded in a matrix. The governing equations are solved over the
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𝑛

Γ𝑁
1

Ω2 𝜉
Γ12 𝜉

Γ12 𝜉
Ω1 𝜉

𝜕Ω2

𝜕Ω1

Γ𝐷
1

𝑛Γ

Ω2 𝜉

Figure 2.8: Schematic of the stochastic model problem.

spatial domain Ω as discussed in Section 1.5. The probability space is denoted by (Σ,B, P ).

Here, Σ is the set of elementary events, B is the σ-algebra of events, and P is the probability

measure. This work considers random variables with uniform distributions. The random

inclusion geometry is characterized by a finite set of random parameters, ξ : Σ → X ⊆

Rd. The random interface location, Γ12(ξ), is defined by the zero contour of a stochastic

version of the LSF (1.1) denoted by φ(x, ξ) : Ω × X → R. The random LSF like its

deterministic counterpart is mapped onto the XFEM mesh by evaluating the parametrized

level set function at the nodes.

The approximation of the solution field in the presence of uncertain material geometry,

using the XFEM (1.4) is defined as,

û (x , ξ) =


∑Ψ

e=1

(∑
i∈I Ni(x )u1

i,e, (ξ)δ1,i
el I

1
i,e(ξ)

)
if x ∈ Ω1(ξ)

∑Ψ
e=1

(∑
i∈I Ni(x )u2

i,e(, ξ)δ2,i
el I

2
i,e(ξ)

)
if x ∈ Ω2(ξ),

(2.5)

where the indicator function I restricts the approximation of the degrees of freedom um
i,e(ξ)

to the active stochastic subdomain X̂m
i,e, construction of which is discussed in Section 2.2.1.

The active enrichment level is denoted by l in δm,iel and depends on ξ. The indicator function
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is defined as

Imi,e(ξ) =

 1 if ξ ∈ X̂m
i,e

0 otherwise
. (2.6)

The degrees of freedom, um
i,e(ξ), are approximated in the stochastic space using a PCE of

order p. The stochastic approximation for a degree of freedom is defined by

um
i,e(ξ) =

MPC∑
j=1

Lmi,e,j(ξ)ami,e,j, (2.7)

where ami,e,j are the stochastic coefficients to be determined and Lmi,e,j are Legendre polyno-

mials defined on X̂m
i,e. While random variables with uniform distributions are considered

in this work, local orthogonal polynomial bases for other distributions may be constructed

numerically. The proposed approach to construct Lmi,e,j follows the multi-element generalized

PCE [130] wherein a single element in X is defined by X̂m
i,e. The stochastic approximation

is restricted to a single element to minimize the number of expansion coefficients to be de-

termined by the system of equations. Section 4.2 of Appendix A provides further details for

the construction of the Legendre polynomials in the current work.

2.2.1 Active stochastic subdomain

The active stochastic subdomain for each degree of freedom, denoted as Xm
i,e ⊆ X ,

defines the stochastic subdomain where the degrees of freedom um
i,e are nonzero. The active

stochastic subdomain for each degree of freedom is constructed based on φj(ξ) = 0 computed

for all nodes of every element sharing node i. Each degree of freedom at node i is active for

one or more regions created by φj(ξ) = 0. Typically each degree of freedom is active over a

single connected subdomain. However a degree of freedom may be active over disconnected

regions depending on the discretization. In this case additional enrichment levels are added

such that each degree of freedom is active over a single connected subdomain. The variation

of the degrees of freedom is smooth over the active stochastic subdomain.

A minimum bounding hyperrectangle approximates the active stochastic subdomain,
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such that X̂m
i,e = [aj, bj] ⊆ [−1, 1]d where j = 1, . . . , d. For d = 1, X̂m

i,e = Xm
i,e. The

basis polynomials in the stochastic approximation are transformed and normalized onto this

hyperrectangle. Figure 2.9 is used to illustrate the concept of active stochastic subdomains

for d = 1. The bar has length L = 1 and is modeled using 5 elements. The interface position

r depends on one random parameter such that r = 0.2ξ + 0.5. The random LSF is given

as φ(ξ) = x− r(ξ). The active stochastic subdomain for u2
3,1 is then defined by the interval

[−1, 0.5]. Here the intersection point ξ = 0.5 is computed from φ4(ξ) = 0.

𝜉 = 0.5 𝜉 = 1𝜉 = −1

෡𝒳3,1
2 = 𝒳3,1

2

𝑟(𝜉)

𝐿

𝑥
Ω1 Ω2

1 2 3 4 5 6

Figure 2.9: 1D spatial intersection configuration example (left) and corresponding active
stochastic subdomain for u2

3,1 (right) .

For d > 1, if the minimum bounding hyperrectangle and the active stochastic subdo-

main do not have similar volumes an ill-conditioned system may result. For instance if the

active stochastic subdomain for d = 2 is a sliver as depicted in Figure 2.10, the area of the

minimum bounding hyperrectangle does not closely match the area of the active stochastic

subdomain. A rotated coordinate system is then required for the bounding rectangle to

closely approximate the active stochastic subdomain as shown in Figure 2.10. Upon rota-

tion the minimum bounding rectangle matches the active stochastic subdomain using the

rotated coordinate system. The transformed basis, Lmi,e,j, is then computed using the rotated

coordinate system. The rotated coordinate system is applied for the numerical examples

in this work when the ratio of the minimum bounding rectangle area to the active area is

greater than 2. The influence of such a rotation of the stochastic subdomain on the Legendre

polynomial bases is discussed in detail in Section 4.2 of Appendix A.



www.manaraa.com

46

𝜉2

𝒳𝑖,𝑒
𝑚 = ෡𝒳𝑖,𝑒

𝑚𝛼

𝒳𝑖,𝑒
𝑚

෡𝒳𝑖,𝑒
𝑚

𝜉1
𝜉1
′

𝜉2
′

Figure 2.10: Example of a sliver configuration of an active stochastic subdomain in 2D (left),
and minimum bounding rectangle defined using a rotated coordinate system (right).

2.2.2 Application to linear elastic bimaterial plate

The effectiveness of the proposed approach is demonstrated using the linear elastic

bimaterial plate problem shown in Figure 2.11. A circular plate of radius b = 2m has a

centered circular inclusion of radius r. The geometry of the inclusion is random with the

radius defined as r = 1.26 + 0.54ξ. The elastic modulus and Poisson’s ratio of the plate are

E1 = 10N/m2 and ν1 = 0.3. The elastic modulus and Poisson’s ratio of the inclusion are

given by E2 = 1N/m2, ν2 = 0.25. This problem is studied using the proposed Heaviside

enrichment in X-SFEM as well as the C0-continuous enrichment proposed in [94]. This

work does not use the ghost penalty approach discussed in 2.1.1, and thus to mitigate issues

with ill-conditioning caused by an extremely small (or large) ratio of intersected areas in an

intersected element, we use the geometric preconditioning scheme introduced in [68].

The degrees of freedom for the x-displacement at x = (0.9, 0) is shown in Figures

2.12 and 2.13 using the C0-continuous [94] and Heaviside enrichment functions, respectively.

The variation of the degrees of freedom using the C0-continuous enrichment is not smooth

with respect to ξ. The peaks correspond to the intersection of the interface with a node.

Therefore more peaks occur as the spatial mesh is refined. Using the Heaviside enrichment
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Ω1

𝑟(𝜉)

𝑥

𝑏

𝑦

𝑥 = (0.9,0)

Ω2

𝒖 = 𝒙 on 𝜕Ω1

Figure 2.11: Problem setup for a bimaterial plate with mesh size h = 0.1m.

the behavior of the degrees of freedom is piecewise smooth in the stochastic domain for any

spatial mesh size, as depicted in Figure 2.13 for different spatial mesh sizes. The value of ξ

at which the degree of freedom becomes active changes with mesh size.

Figure 2.12: Regular (left) and enriched (right) degree of freedom using the C0 enrichment
function [94] for the x-displacement at x = (0.9, 0) as a function of ξ with spatial mesh
refinement.
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Figure 2.13: Level 1 degrees of freedom for phase 1 (left) and phase 2 (right) using the
generalized Heaviside enrichment strategy for the x-displacement at x = (0.9, 0) as a function
of ξ with spatial mesh refinement.

An analytical solution to the current problem exists [121] and is used to compute

the relative error in the X-SFEM solution. A comparison of the solution error using the

C0-continuous and Heaviside enrichment functions is shown in Figure 2.14. A higher con-

vergence rate is achieved using the Heaviside enrichment. This higher convergence rate can

be attributed to the smoother degrees of freedom obtained using the Heaviside enrichment

as discussed above.

Section 5 of Appendix A presents three more numerical examples to study the conver-

gence and accuracy of the proposed Heaviside enriched X-SFEM. Examples with one and two

random parameters are studied in detail. Problems with continuous as well as discontinuous

solution across the material interface are studied

2.2.3 Outlook and future work

The convergence and accuracy of the proposed method was demonstrated for example

problems with continuous and discontinuous solutions at the interface. The degrees of free-

dom are smooth with respect to the random parameters regardless of the spatial mesh size.
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e

p

Figure 2.14: Error convergence using the X-SFEM with respect to p. Solid and dashed lines
represent the Heaviside and C0-continuous enrichment functions, respectively.

Due to the smoothness of the degrees of freedom convergence in the stochastic space occurs

with low orders of the polynomial approximation.

Although good precision approximate solutions have been obtained using the proposed

X-SFEM framework, at the stochastic level integration becomes more and more expensive as

the dimension (number of random parameters) in the stochastic domain increases. With an

increase in the stochastic dimensionality stochastic partitions get more and more complex

with presence of regions in the stochastic domain with small areas and the non-triviality

involved in monitoring stochastic partitions for such regions. This constitutes the main

disadvantage associated with the current intrusive framework requiring integration in the

stochastic domain. Hence future work should focus on non-intrusive approaches such as con-

struction of response surfaces for predicting the response of physical systems with uncertain

material geometry.

Note, ever since the publication of the above work [71] there has been limited work

surrounding the concept of modeling uncertainty using the XFEM with particular applica-
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tions to magneto-active heterogeneous materials with random microstructure [105], and to

fracture analysis of laminated composite plate with a central crack [66].
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Behavior of Shape Sensitivities

Based on (1.22), shape sensitivities depend on: i) variation of the response function,

Z, with respect to the design variables and ii) the variation of the residual of the system of

equations, R, with respect to the design variables. The dependency of R on a single design

variable s can be decomposed into explicit and implicit parts such that,

∂R
∂s

=
∂R
∂s

+
∂R
∂xΓ

∂xΓ

∂s
. (3.1)

The above can be decomposed on an elemental level to obtain the discretized residual deriva-

tives such that

∂R̂
∂s

=
∑
e∈Ne

∂R̂e

∂s
+
∑
e∈Ne

NΓ∑
k=1

∂R̂e

∂x kΓ
V k; V k =

∂x kΓ
∂s

, (3.2)

where Ne is the set of all elements that constitute the finite element mesh, and NΓ is the

number of interfaces present within the element e. The boundary velocity V may or may

not be of constant magnitude along the material interface. Note that ∂R̂e/∂x
k
Γ vanishes

for elements not intersected by the material interface. Furthermore, unless the governing

equations depend explicitly on the design variables the first term in 3.2 vanishes. As a result

often only the second term needs to be computed. This however is not the case if using a

C0-continuous enrichment wherein the enrichment function itself depends explicitly on the

design variables [92]. While it is straightforward to determine the explicit dependency of

the response function on the design variable, it is less obvious how the residual behaves with

respect to the design variable within the context of the Heaviside-enriched XFEM.
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The generalized Heaviside enrichment strategy used in this thesis allows for each dis-

connected region of the same phase to be approximated by an independent set of nodal

degrees of freedom. If the support of a nodal basis function is intersected by the interface as

in Figure 1.6, by construction the solution is discontinuous across the interface. The pres-

ence of such a discontinuity presents the primary motivation to investigate the behavior of

shape sensitivities within the context of Heaviside-enriched XFEM. To better demonstrate

the discontinuity across the material interface we plot the degrees of freedom and ∂R/∂s as

a function of s, in Figures 3.1 and 3.2 respectively, corresponding to a node belonging to one

of the intersected elements from Section 3.1.
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1.5
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3.5

s

T
2 1
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Figure 3.1: Degrees of freedom for node located at x = (16.75, 3), in Figure 3.4

Section 4 of Appendix B presents detailed derivations of ∂R/∂s using both continuum

(differentiate, then discretize) and discrete (discretize, then differentiate) approaches. The

choice of approach for computing ∂R/∂s depends largely on the system of equations that

needs to be solved as well as the generality and ease of implementation. Both the discretized

and continuum approach present limitations in their application to a generic framework

irrespective of the physics involved as also discussed in Section 4 of Appendix B. As the

preferred option in the current study we adopt a semi-analytical approach wherein great
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Figure 3.2: ∂R/∂s for degrees of freedom plotted in Figure 3.1

ease of implementation is achieved by finite differencing the term ∂R̂e/∂x
k
Γ in (3.2) using a

design perturbation size ∆FD:

∂R̂
∂s

=
∑
e∈Ne

NΓ∑
k=1

NxΓ∑
i=1


R̂e

∣∣∣
x

Γk
i

+∆FD

− R̂e

∣∣∣
x

Γk
i
−∆FD

2∆FD

V xΓi
. (3.3)

where NxΓ
is the number of intersection points.

Alternatively, a hybrid scheme may be adopted wherein a continuum approach (derived

in Section 4 of Appendix B) may be used for volumetric terms while the material boundary

terms are subjected to finite differencing to give,

∂R
∂s

=

∫
Ωm

∂F
∂s

dx +

∫
∂Ωm
FV · ñ dx ′

+
∑
e∈Ne

NΓ∑
k=1

NxΓ∑
i=1


R̂eΓ

∣∣∣
x

Γk
i

+∆FD

− R̂eΓ

∣∣∣
x

Γk
i
−∆FD

2∆FD

V xΓi
.

(3.4)

Here F can take the form of any of the integrands in (1.7), (1.9) or (1.16), defined in Ωm.

The finite differencing in (3.3) and (3.4) is carried out by perturbing the individual edge

intersection points, xΓi , belonging to every intersected finite element as shown in Figure 3.3.
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Such a perturbation helps account for the arc length change capturing the curvature of the

interface too. In contrast a global finite differencing is performed by perturbing the entire

interface geometry via the design variable such that

∂Z
∂s

=

∫
Ωm
G|s+∆FD

−
∫

Ωm
G|s−∆FD

2∆FD

dx +

∫
∂Ωm
G ′|s+∆FD

−
∫
∂Ωm
G ′|s−∆FD

2∆FD

dx ′. (3.5)

The continuous function, G, is defined over the material subdomain Ωm (e.g. strain energy).

The continuous function, G ′ exists only on the material boundaries (e.g. interface stress

measure).

𝜙1 > 0 𝜙2 > 0

𝜙4 < 0 𝜙3 < 0

Ω2: 𝜙 > 0

Ω1: 𝜙 < 0

Δ𝑥Γ1 =

𝑥Γ1 ± Δ𝐹𝐷

Δ𝑥Γ2 =

𝑥Γ2 ± Δ𝐹𝐷

Figure 3.3: Perturbing intersection points for finite differencing in (3.3).

3.1 Verification of shape sensitivities

6
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𝑦
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2𝑠 Δ𝑠

Figure 3.4: Heat diffusion problem setup with strip inclusion. All dimensions in m

We consider a two-phase steady state diffusion problem shown in Figure 3.4. A vertical

strip inclusion of conductivity k2 = 10W/(mK) is embedded into a rectangular matrix of

conductivity k1 = 1W/(mK). The center location of the strip is maintained constant at
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x = (15, 6). A Neumann boundary condition of qN = 1Wm−2 is applied along the left

edge. A Dirichlet boundary condition of TD = 1K is applied to the right edge. The top

and bottom edges are adiabatic. The problem domain is discretized using a mesh size of

h = 1.0m. The design variable, s, is half the width of the strip inclusion, measured parallel

to the horizontal axis. Shape sensitivities are recorded for every configuration as the design

variable is varied between s = 1.5 and s = 2.5, in constant increments of ∆s = 0.02. The

response function, Z, is the temperature measured at node A located at x = (0, 0). Shape

sensitivities are recorded for every configuration as the design variable is varied between

s = 1.5 and s = 2.5, in constant increments of ∆s = 0.02. The response function, Z, is the

temperature measured at node A located at x = (0, 0). This work does not use the ghost

penalty approach discussed in 2.1.1, and thus to mitigate issues with ill-conditioning caused

by an extremely small (or large) ratio of intersected areas within an intersected element, we

use the geometric preconditioning scheme introduced in [68].

The current problem setup is a 2D approximation of a 1D model with the analytical

solution given by

TA = TD +

(
30− 2s

k1

+
2s

k2

)
qN
6
,

∂TA
∂s

= −0.3.

(3.6)

The analytical solution in (3.6) shows a linear dependency of Z on the width of the vertical

strip inclusion. As a result the corresponding shape sensitivities are constant as computed in

(3.6). A perturbation size of ∆FD = 10−6h/2 was chosen. The shape sensitivities obtained

using the different approaches discussed above are presented in Figure 3.5. The relative dif-

ference in sensitivities between the three approaches was insignificant (approximately 10−8)

except at s = 2.0 which resulted in an intersection configuration wherein the material inter-

face coincides with finite element mesh nodes. Here the finite differenced sensitivities vanish.

This behavior is a result of the material interface shift depicted in Figure 1.7 and is discussed

in detail in Section 5.1.2 of Appendix B. To maintain accuracy of the shape sensitivities

it is important that the finite difference perturbations in Figure 3.3 do not undergo any
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interface shift within the critical shift distance. While finite differencing ∂R̂e/∂x̂
k
Γ, design

perturbations may result in the material interface crossing over to a neighboring element.

To ensure central finite differencing of ∂R̂e/∂x̂
k
Γ, the finite difference perturbation size is

chosen to be less than the critical shift distance. Inaccurate sensitivities are obtained via

global finite differencing (3.5) because finite differencing ∂Z/∂s at a global level provides no

control over the elemental interface shift, i.e. G ′|s+∆FD
, G ′|s−∆FD

, G|s+∆FD
and G|s−∆FD

in

(3.5) are evaluated based on design configurations subjected to the material interface shift.

For various values of ∆FD between 10−3h and 10−10h, the relative difference (with respect to

∆FD = 10−6h/2) in the XFEM-based shape sensitivities was measured to be approximately

10−5, thus proving the robustness of the proposed semi-analytical approach.
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Figure 3.5: Accuracy of semi-analytical shape sensitivities: Response function (left) and
corresponding shape sensitivities (right).

3.2 Effect of geometry discretization and LSF on shape sensitivities

Since we use the LSM to describe our interface geometry we note an implication of

computing the design velocity, V = ∂xΓ/∂s using the level set field. Referring to Figure
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1.6, the interface position can be expressed in terms of the level set field such that

xΓ = x1 −
x2 − x1

φ2 − φ1

φ1. (3.7)

The design velocity is then given by,

∂xΓ

∂s
δs =

x2 − x1

(φ2 − φ1)2

(
φ1
∂φ2

∂s
δs− φ2

∂φ1

∂s
δs

)
. (3.8)

Based on (3.8) the gradient of the level set field |∇φ| ≈ |(φ2 − φ1)/(x2 − x1)| may have a

strong influence on the shape sensitivities.

Ω2 𝜃
6Ω1

𝑦

𝑥

30

𝑞𝑁 = 1
2𝑟

𝑇𝐷 = 1Ω2 2𝑠

𝐴

Figure 3.6: Heat diffusion problem setup with circular inclusion. All dimensions in m

Through a numerical example we investigate the dependency of the shape sensitivities

on the discretization of the design geometry as well as the gradient of the LSF, |∇φ|. We

consider a two-phase steady state diffusion problem shown in Figure 3.6. A circular inclusion

of conductivity k2 = 10W/(mK), is embedded into a rectangular matrix of conductivity

k1 = 1W/(mK). The circular inclusion is centered at x = (15, 3). A Neumann boundary

condition of qN = 1Wm−2 is applied to the left edge. A Dirichlet boundary condition of

TD = 1K is applied to the right edge. The top and bottom edges are adiabatic. The design

variable, s, is the radius of the circular inclusion. Shape sensitivities are recorded for every

configuration as the design variable is varied between s = 1.5 and s = 2.5, in constant

increments of ∆s = 0.02. The response function, Z, is the temperature measured at node

A located at x = (0, 0). In this example, we also focus on the sensitivities for the perimeter

(per) of the inclusion. The circular inclusion has a perimeter of 2πs. Consequently, the

analytical solution for the sensitivity of the perimeter is 2π.
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We consider four LSFs, all of which represent a circular geometry but vary in the

gradient of their function:

LSF1 =⇒ φ(x ) = s− |x − x c| ,

LSF2 =⇒ φ(x ) =
LSF1

10
,

LSF3 =⇒ φ(x ) = LSF1 ∗ 10,

LSF4 =⇒ φ(x ) = LSF1 ∗
(
0.1 sin2(ωθ) + 10

(
1− sin2(ωθ)

))
,

(3.9)

where ω is the frequency and θ is the angle measured in radians. The function LSF1 possesses

sign distance property. Figure 3.7 present the four level set fields discussed in 3.9. Although

they represent the same geometry, it is evident their gradients differ significantly.

−13 0 2 −1.3 0 0.2

−130 0 20 −50 0 20

𝐿𝑆𝐹1 𝐿𝑆𝐹2

𝐿𝑆𝐹3 𝐿𝑆𝐹4

Figure 3.7: Level set functions described in (3.9) with zero level set contour.

We use the sign distance function (LSF1) to study the influence of geometry dis-

cretization on the shape sensitivities. The response function and the corresponding shape

sensitivities for a mesh sizes of h = 0.25 and h = 0.05 are plotted in Figure 3.8. A visibly
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smooth response function is obtained. However, the shape sensitivities for h = 0.25 obtained

are not smooth. Plotted alongside the sensitivities for the response function are the sensi-

tivities for the perimeter of the circular inclusion. With mesh refinement the sensitivities for

the inclusion interface perimeter approach the constant value of 2π indicating a more accu-

rate approximation of the interface geometry. The improved approximation of the interface

geometry leads to a smoother behavior of the shape sensitivities. Thus implying influence

of the discretization of the design geometry on the computation of the shape sensitivities.
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Figure 3.8: Dependence of shape sensitivities on geometry discretization: Response function
(left), and sensitivities corresponding to response function (middle) and perimeter (right)
using LSF1.

Since the smoothness of shape sensitivities depends on the discretization of the geome-

try, the levels of mesh refinement required to obtain smoother shape sensitivities is geometry

dependent. As a result finer meshes are required to better approximate the geometries of

smaller feature sizes. Alternatively the order of the geometry description can be increased.

Instead of using polygons in 2D and facets in 3D to approximate the material interface

within an element as done in this study, higher-order approximations could be used. It is

important to note, the smoothness of the shape sensitivities is not entirely dependent on

the discretization of the geometry. This is observed from the sensitivity plots in Fig. 12

of Appendix B where the design geometry consists of only straight lines. The fluctuations
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observed there are attributed to the change in triangulation patterns as the interface moves

through the background mesh. Recall from Figure 1.8, the integration subdomains in the

current study are constructed via Delaunay triangulation.

We now study the effect of |∇φ| on the behavior of shape sensitivities. We use a mesh

with h = 0.05 to eliminate errors in sensitivity resulting from geometry discretization. Figure

3.10 plots the response functions and the corresponding sensitivities for the different LSFs

as a function of the design variable s. The response function for the different LSFs match

closely with relative differences of less than 10−5. However the sensitivities computed using

LSF4 present significant deviation from the sensitivities computed using rest of the LSFs.

The objective sensitivities computed using LSF4 although oscillatory reproduce the overall

behavior produced by other LSFs. However, the perimeter sensitivity computed using LSF4

present significant oscillations and deviate from the expected value of 2π. Considering the

accurate sensitivities obtained using LSF2 and LSF3 it can be inferred that the uniformity

(or non-uniformity) of |∇φ| plays a significant role in determining the accuracy(or lack of)

of the sensitivities as compared to the slope alone of |∇φ|. Regardless of oscillations in

sensitivities, for all LSFs considered here the shape sensitivities were accurate in regards to

the respective LSF, as determined by verification against finite differenced sensitivities.

It should be further pointed out that the shape sensitivities for LSF2 and LSF3 are

equal to the shape sensitivities for LSF1 owing to the chain rule in (3.8). This would not

be the case if the design variables were nodal level set values. In such a scenario the shape

sensitivities scale with the respective LSF although still mimicking the overall behavior of

shape sensitivities corresponding to the sign distance function LSF1. The shape sensitivities

for nodal level set values as design variables are plotted in Figure 3.9 corresponding to s = 1.5

in Figure 3.6. As discussed earlier, in the context of the XFEM shape sensitivities exist only

for intersected element. Hence for clarity, Figure 3.6 plots only the domain in the vicinity of

the circular inclusion.

In order to track the origin of oscillations in shape sensitivities for LSF4 we further
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Figure 3.9: dZ/ds (top) and d(per)/ds (bottom) for nodal level set design variables.

draw comparisons against two more LSFs as defined below.

LSF5 =⇒ φ(x ) = LSF1 ∗
(
0.60 sin2(ωθ) + 9.50

(
1− sin2(ωθ)

))
LSF5 =⇒ φ(x ) = LSF1 ∗

(
2.05 sin2(ωθ) + 8.05

(
1− sin2(ωθ)

)) (3.10)

As is evident from (3.10) LSF4, LSF5, and LSF6 differ in their amplitudes which is directly

proportional to the curvature of the LSFs in Rd+1. Figure 3.11 presents a comparison of

the shape sensitivities between LSF1, LSF4, LSF5, and LSF6. Clearly as the curvature

decreases from LSF4 to LSF5 to LSF6 the shape sensitivities become less oscillatory in that

order. This shows a strong influence of the curvature of an LSF and shape sensitivities.

Section 5 of Appendix B uses various numerical studies to establish the accuracy and

robustness of computing shape sensitivities using the proposed semi-analytical approach

within the framework of Heaviside-enriched XFEM. Examples in 2D and 3D using linear

and nonlinear physics are studied.
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Figure 3.10: Influence of |∇φ| on the response function and corresponding shape sensitivities

3.3 Effect of XFEM informed smoothing of stresses on sensitivities

We further investigate the accuracy of the stress sensitivities using the XFEM informed

smoothing approach presented in Section 2.1.2. The stress sensitivities are computed with

respect to the inclusion radius, r, of the problem setup in Section 2.1.3. Figure 3.12 plots

the stress sensitivities for different mesh sizes of h = 0.025m and h = 0.005m. Reference

sensitivities are obtained using a body-fitted mesh. Area weighted smoothing and XFEM

informed smoothing without ghost penalty result in oscillatory sensitivities. Mesh refinement

further aggravates the oscillations. In contrast sensitivities corresponding to XFEM informed

smoothing with γu = 0.1 and γτ = 10−4 are smooth and converge with refinement in mesh.
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Figure 3.11: Influence of variation of |∇φ| (curvature) on the response function and corre-
sponding shape sensitivities

Using larger values of γu and γτ results in smoother stress profiles. Consequently XFEM

informed smoothing with γu = 1.0 and γτ = 10−2 results in diminished sensitivities especially

on coarse meshes as can be seen for h = 0.025m.
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Figure 3.12: Comparison of stress sensitivities along material interface for h = 0.025m (left)
and h = 0.005m (right).

3.4 Outlook and future work

We proposed an XFEM informed semi-analytical approach to computing shape sensi-

tivities. Accuracy and robustness of the semi-analytical shape sensitivities was established

via comparisons against body-fitted and finite differenced shape sensitivities. One disadvan-

tage of the Heaviside-enriched XFEM is the need for interface conditions to enforce continuity

in solution across the material interface. The accuracy (relative to a body-fitted mesh) of

the shape sensitivities was found to be influenced by how strongly the interface conditions

are enforced as discussed in Section 5.1.1 of Appendix B. Furthermore we illustrated the

dependency of the smoothness of shape sensitivities on the discretization of the design ge-

ometry. With refinement in mesh and and an accurate description of the material geometry

smoother sensitivities were obtained.

As a topic of future work we bring to light a possible issue with the current framework
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Figure 3.13: Discretized consistent (left) and continuum consistent (right) approach for
perturbing points of interest for computation of semi-analytical sensitivities (3.3).

Figure 3.14: Stress sensitivities using discretized consistent (left) and continuum consistent
(right) approach for XFEM informed smoothing with γu = 0.1 and γτ = 10−4 .

of evaluating shape sensitivities in a discretized setting. From Figure 3.13 we see that

the shape sensitivities are computed in the direction of the element edge as opposed to
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the direction of the motion of the interface. This approach although consistent with the

immersed boundary framework, is inconsistent with the continuum concept according to

which shape sensitivities depend only on the normal component of the deformation of the

material boundary [26]. So to say, in a discretized setting the intersection points along

material edges compute only a component of the actual material interface velocity. If this

component is almost tangential to the material interface boundary, naturally the velocity at

that intersection point will be a reduced version of the actual velocity leading to diminished

shape sensitivities. This effect is observed in Figure 3.14 which shows a comparison of

shape sensitivities for XFEM informed smoothing with γu = 0.1 and γτ = 10−4 in Figure

3.12, using discretized consistent and continuum consistent approaches. For demonstrative

purposes the shape sensitivities using the continuum consistent approach in the current

example are evaluated at xΓm as shown in Figure 3.13. The discrepancy in the discretized

consistent and continuum consistent approach has not formed the basis of any study yet

and presents a great avenue for future work. It is not clear how the continuum consistent

approach should be implemented in an XFEM-based framework. Furthermore, it is also not

yet clear how, if at all, the continuum consistent approach would influence design criteria

integrated over the entire domain or away from the interface, in comparison to the discretized

consistent approach. In the author’s experience, the sensitivity of a global or far away

design criteria using the discretized consistent approach are not influenced significantly by

the locally diminished sensitivities, if any. However, a more systematic study investigating

this issue needs to be performed.
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Advances in Design Optimization

As mentioned in Section 1.5.1 the current work focuses on level set based topology

optimization using nodal level set values or geometric primitives as design variables. The

description of the LSF φ(x ) significantly depends on the choice of the design variables s .

Following the discussion in Section 3.2 an oscillatory LSF can heavily influence the shape

sensitivities which may further affect convergence of the optimization process. Furthermore

an oscillatory material boundary is known to promote convergence to local minima [28], and is

unattractive from a design and manufacturing standpoint. An oscillatory material boundary

can also influence the analysis of the physical system, introducing unwanted noise in the

XFEM-based approximation of the solution. Hence regularizing the LSF so as to control its

smoothness and limit the amount of spatial variations of the LSF is important. Common

regularization schemes for doing so, include: i) As discussed in [4], perimeter regularization

is closely related to the mean curvature of the material boundary. Hence controlling the

perimeter to produce non-oscillatory material boundaries is a common option [27, 82, 137].

ii) Use of a filtering/averaging scheme to reduce fluctuations in the material boundary.

Applying a filter to an LSF is usually straightforward and does not involve toying with the

objective or constraints [1, 82]. In contrast, a relatively complicated approach was adopted

in [61] wherein a Helmholtz PDE-based filtering technique was used to smoothen the LSF.

For nodal level set values as design variables a perimeter penalty (4.3) prevents emer-

gence of small geometric features and helps get rid of oscillations in an LSF along the material
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boundary as shown in [82]. The intensity of the perimeter penalization needs to be carefully

managed as too high a magnitude may result in loss of structurally significant geometric

features. For geometric primitives as design variables the shape of the material boundary

is made smooth by using a simple anisotropic filter which presents certain advantages over

penalizing the perimeter (see Section 4.2.2).

It is a well known fact that LSM-based optimization methods suffer from slow design

evolution resulting from localization of the shape sensitivities. Geometric primitive-based

optimization alleviates this issue due to lack of localized shape sensitivities. For nodal level

set values as design variables, slow convergence is alleviated by adopting the isotropic filtering

approach of [44] as discussed in [82]. The LSF value, φi, for node i is then defined through

an explicit function of the optimization variables as follows:

φi =

∑Nn
j=1 wijsj∑Nn
j=1 wij

, (4.1)

where

wij = max (0, rφ − ‖x i − x j‖) . (4.2)

Here Nn is the number of nodes in the finite element mesh and rφ is the smoothing filter

radius. The linear filter (4.1) widens the zone of influence of the design variable on the

level set field resulting in enhanced convergence of the optimization process [65]. The filter

in 4.1 is known to have a smoothing effect too, although the control over geometry is not

very reliable [82]. In the absence of a level set filter φi = si. To avoid inconsistencies in

the optimization process all filtering schemes should be accounted for in (3.8) through chain

rule.

4.1 Stress-based optimization

To make stress-based topology optimization compatible with recent advances in ad-

ditive manufacturing, robust and reliable prediction of stresses and corresponding shape

sensitivities is important. Following the discussion in Sections 2.1 and 3.3 we apply the
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proposed framework of spatially stabilized stresses to the benchmark topology optimization

problem of an L-beam.

The majority of previous work on stress constrained optimization considers volume

minimization problems subject to stress constraints. For a material-void problem such a

formulation is ill-posed with the optimal solution being a structure with zero volume. We

thus formulate the optimization problem as a compliance minimization problem subject to

stress and volume constraints. While compliance minimization leads to an overall decrease in

stresses, stress constraints are required to eliminate designs with stress peaks. To promote

smooth shapes and discourage the formation of small geometric features we augment the

objective with a measure of the interface perimeter [50, 82]. The optimization problem is

formulated as follows.

min
s

cJJ (u(s)) + cPP(s)

s.t.


g(σV (τ(s)) ≤ 0

g(σΓ(τ(s)) ≤ 0

V 1(s)
V (s)
− cV ≤ 0

, (4.3)

where J is the compliance integrated over the complete domain, and P is the perimeter

corresponding to the material domain boundary. The penalties cJ and cP are associated with

the compliance and perimeter respectively. These are chosen such that the terms constituting

the objective function are of similar order throughout the optimization process. The volume

ratio of the material phase, V 1, with respect to the total volume, V , is constrained to be

less than or equal to cV . Section 4 of Appendix C discusses the optimization formulation

adopted for material-material problems wherein the objective is to minimize the volume

fraction of phase 1. In contrast to a material-void setting, such a problem formulation is not

ill-posed because the design domain consists of at least one material leading to a structural

design with finite volume at all times during the optimization process. In addition to the

constraints listed in (4.3) we make use of box constraints to bound the design variables such
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that −h ≤ s ≤ +h for mesh size h.

The stress constraints in this thesis are implemented using the global constraints ap-

proach of [99]. It is easy to implement and sufficient to study the primary goal of this work,

which strictly pertains to the applicability of spatially stabilized stresses to stress-based

optimization. Consequently the findings of the current work are applicable to any of the

other numerous approaches available in literature ranging from local stress measures (e.g.

[25, 31, 33, 45]) to global measures (e.g. [3, 55, 77, 103, 106]) to block aggregation methods

(e.g. [73, 100]). The global stress constraints approach implies the use of one constraint that

represents all local constraints. Given a maximum allowable stress value, σmax, the global

stress constraints are defined as,

g(σV (τ(s)) =
1

βV
log

∫
Ω

eβV ( τ−σmaxσmax
)dx − 1

βV
log

∫
Ω

dx ,

g(σΓ(τ(s)) =
1

βΓ

log

∫
Γ

eβΓ( τ−σmaxσmax
)dx ′ − 1

βΓ

log

∫
Γ

dx ′.

(4.4)

The stress constraints in (4.4) are formulated using the smoothed stresses of (2.3). The

parameters βV and βΓ are tuning coefficients which penalize the failure to satisfy the stress

constraint. As they tend to infinity the stress constraints become equal to (τ − σmax)/σmax.

However, a large value of βV or βΓ renders the optimization problem unstable and difficult to

solve due to the increasing nonlinearity and badly scaled sensitivities of the stress constraints.

Selection of the parameters βV and βΓ thus involves a trade-off between accuracy of the global

stress capturing capability and stability of the optimization problem. Figure 4.1 plots the

variation of the stress constraints in (4.4) as a function of the tuning coefficients. Sensitivities

are computed using the adjoint approach discussed in Section 1.5.1.2, and detailed in Section

4.2 of Appendix C.

4.1.1 Application to L-beam

Through this example we demonstrate the applicability of the proposed approach to

the benchmark problem of an L-beam in 3D. A vertical load of P = 0.1N is applied along
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Figure 4.1: Variation of stress constraints as a function of the tuning coefficient β.
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Figure 4.2: (a) Cross-sectional view of the L-beam problem setup; Finite element mesh,
h = 0.2m, with initial seeding in 3D for load case RE: (b) Top view; (c) Perspective view;
(d) Slice along the thickness. All dimensions are in m.

the middle of the right vertical edge, distributed over two elements along the height. The

beam is made of an isotropic elastic material with Young’s modulus, E = 100N/m2, and a

Poisson’s ratio, ν = 0.3. The problem domain is discretized using a mesh size of h = 0.2m. A

list of relevant problem parameters is presented in Table 4.1. Figure 4.2 shows the problem

setup alongside the finite element mesh with the initial seeding of the design domains using

circular inclusions of radius 0.7m. The black regions are occupied by the elastic material
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Table 4.1: Parameter list for topology optimization of single-phase 3D linear elastic L-beam.

Parameter Value

σmax 0.3N/m2

rφ 2.4 h
cJ 102

cP 0.006
cv 0.48

βV (up till iteration 360) 15
βV (iteration 360 onward) 18

βΓ 6
GCMMA step size (up till iteration 360) 0.002

GCMMA step size (iteration 360 onward) 0.005
GCMMA constraint penalty 104

(phase A). The void regions (phase B) are depicted in grey. As mentioned in Section 2.1.1

faces lying on the boundary of the mesh are not stabilized. To ensure that gradients across

all material faces are stabilized we expand the domain along the original boundary of the

beam including, along the thickness of the structure. In Figure 4.2a the extended boundary

is represented by the unshaded region.

Figures 4.3 and 4.4 present the evolution of the normalized compliance and constraints,

respectively. The initial design violates every constraint. The compliance of the structure

rises initially while the stress reduces. As a result, the re-entrant corner profile has a lower

curvature. Subsequently a decrease in the compliance of the structure and presence of active

stress constraints result in a completely inclined flange. During the optimization process

it was observed that the structure near the application of the load gets very thin as the

volume is reduced and develops a tendency to break off completely. This phenomenon is

represented by a spike in the evolution plots of Figure 4.3 and 4.4. To prevent the structure

from completely breaking off we adopt a continuation strategy for the GCMMA step size,

starting with a small value and as the volume constraint is close to being satisfied the step

size is increased. Reducing the volume of a structure is counteractive to reducing the stress.
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Figure 4.3: Evolution of normalized compliance for 3D linear elastic L-beam.
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Figure 4.4: Evolution of stress and volume constraints for 3D linear elastic L-beam.

Thus, to facilitate smooth convergence of the optimization problem a continuation strategy is

also adopted for the KS tuning coefficient, βV . Figure 4.5 presents a comparison of the final

designs obtained with and without stress constraints. In the absence of stress constraints the

re-entrant corner is retained resulting in localized high stresses. Ignoring stress constraints

although resulted in a design with 3.8% lower compliance, the increase in peak stresses was
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Figure 4.5: Stress distribution in optimized design for 3D linear elastic L-beam: (a) Without
stress constraints; (b) With stress constraints

61.9% compared to the optimized design using stress constraints..

Section 5 of Appendix C presents various other examples relevant to the current dis-

cussion. Applicability of the proposed approach to topology optimization under different

load cases is shown for a material-void L-shaped beam using an elastic material in 2D. We

also apply the proposed approach to optimizing the design of a material-void L-shaped beam

using a hyperelastic material in 2D and 3D. Furthermore arguments are made in favor of

using a hyperelastic material outside the small strain limit for stress-based optimization.

Finally the proposed optimization approach is extended to a material-material 2D L-beam

using linear elastic materials. A comparison is drawn between designs optimized for dif-

ferent allowable maximum stress values. For all optimization problems considered smooth

convergence of stress constraints was reported based on the evolution plots presented.
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4.1.2 Outlook and future work

We established the applicability of spatially stabilized stresses to stress-based opti-

mization for material-void and material-material problems. Linear elastic and hyperelastic

problems in 2D and 3D were considered. Future studies should focus on more accurate

measures for stress constraints such as the regional measure in [73] should be employed for

better control of local stress levels. In addition, multiphase problems involving more than

two materials should be considered.

4.2 Topology Optimization using Geometric Primitives

Optimal design

Initial design

𝛿𝑠

Slow

design evolution

Optimal design

Initial design

Fast

design evolution

𝛿𝑠

Figure 4.6: Design evolution resulting from localized sensitivities in traditional LSM (left)
and more universal sensitivities using geometric primitives (right).

Compared to the more popular element or node-based design optimization frameworks,

the concept of geometric primitives as design variables allows for geometry information to

be directly incorporated into the topology optimization framework. With crisp definition

of material geometries and accurate physical response along material boundaries, immersed

boundary methods present a great platform for geometric primitive-based topology optimiza-

tion. As a result immense possibilities are presented for making the optimization process

more flexible from a geometric standpoint [93, 143]. Moreover, geometric primitives as design

variables are independent of mesh size, and thus do not scale with the number of elements
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in the mesh. Hence the topology optimization process is rendered computationally less ex-

pensive. Furthermore, LSM-based topology optimization is known to suffer from slow design

evolution resulting from extremely localized sensitivities. The concept of geometric primi-

tives alleviates this issue as shown in Figure 4.6. Therein, the initial design comprises of a

thin block. Assuming the optimal design is a thicker version of the thin block, an approach

using nodal level set values as design variables results in slow design evolution resulting from

localized perturbations of the design corresponding to every nodal design variable. In con-

trast, using a geometric primitive such as a rectangle with its height as the design variable

will lead to a faster design evolution resulting from a universal perturbation of the design.

Work on geometric primitives as design variables in topology optimization has gained

contribution from primary two research groups. The first group of researchers, with the

aim of establishing a direct link between topology optimization and CAD systems developed

a new computational framework for minimum compliance optimization based on the con-

cept of moving morphable components (MMC) [47]. Structural topology optimization was

performed using super-ellipses describing rectangular components in 2D. The finite element

problem was evaluated using the XFEM. This work was extended to allow for components

with variable thicknesses in [144] and curved members in [46]. The work in [144] was per-

formed using the Ersatz material model with the material layout described by projecting an

aggregated min/max topological description function describing the MMCs. The framework

presented in [144] was extended to 3D problems in [142]. Recently in [145] the MMC ap-

proach was used to control the structural complexity of the optimized design based on the

number of components forming the structure. The second group of researchers have consis-

tently used geometry projection techniques mapping geometric primitives to density fields

for performing topology optimization. The idea was first presented in [9] where the stiffness

of structures was maximized using rectangular bars of fixed width. As a more comprehensive

extension to the previous study, in [93] the out-of-plane thickness was penalized similar to

density in SIMP such that the resulting design is made of bars of a specified thickness, and
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of bars with zero thickness. Furthermore the geometry projection functions of the individual

bars were aggregated using a p-norm function. This work was extended to optimize struc-

tures made of plates (in 3D) with constant thickness [141]. Therein a composition of the

density resulting from the geometric projection of the plates and a free density field was

performed to allow for the creation of holes and modification of plate boundaries to assume

non-rectangular shapes. This results in a hybrid between geometric primitives and density-

based methods. Recently a framework for stress-based topology optimization of structures

using bars and plates was presented in [140]. Therein a global stress measure aggregating

the stress at the centroid of every geometric primitive was used to generate optimizes design

without stress singularities.

All of aforementioned work has been restricted to linear elasticity. Furthermore use of

immersed boundary methods for geometric primitives-based topology optimization has been

restricted to 2D problems. Through this contribution of the thesis we aim at addressing

these gaps in literature. We further present an anisotropic filter in combination with explicit

penalization of design variables to promote smooth LSFs and smooth material boundaries

which are attractive from a convergence (avoiding local minima), analysis, and manufacturing

point of view.

4.2.1 Ribs as geometric primitives for topology optimization

In this thesis we use ribs in 2D and 3D as discrete building components. Figure 4.7

presents an example of a rib in 3D. The level set field of a rib in 3D is defined using the LSF

for a superellipsoid such that

φrib =

((
r − rc
a

)p
+

(
s− sc
b

)p
+

(
t− tc
c

)p)1/p

− 1. (4.5)

The length, width, and height of the rib are assumed along x, y and z direction respectively

given by 2a, 2b, and 2c. The parameter p controls the ’rectangle-ness’ of the rib with p = 2

representing a circle. In the current study p = 10 was found to satisfactorily represent a rib.
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Figure 4.7: Example of a 3D rib as a geometric primitive.

The rib is free to rotate about the z-axis. Thereby the local coordinate system of the rib

is oriented at an angle θ measured in radians w.r.t. to the Cartesian coordinate system, as

shown in Figure 4.7. This transformation is straight forward and defined as
r − rc

s− sc

t− tc

 =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1



x− xc

y − yc

z − zc

 . (4.6)

The design variables of a rib in 3D are its position (xc, yc, zc), dimension (a, b, c) and ori-

entation θ. The definition of the design variables remain unchanged in 2D in absence of zc

and c. Multiple ribs can be represented using a single LSF by, e.g. using the Kreisselmeier-

Steinhauser function [64] to present a differentiable approximation of the minimum operator:

φKS = − 1

β
ln

(
i=nrib∑
i=1

e−βφ
i
rib

)
(4.7)

where nrib is the number of ribs in the design domain, and β is a parameter controlling the

sharpness of the approximating function. This thesis uses a value of β = 20.
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4.2.2 Anisotropic smoothing

The goal here is to regularize the LSF to produce smooth material boundaries in the

in-plane directions of the structure. Consequently we propose an ansitropic filter wherein

the LSF value, φi, for node i is defined as follows:

φi =

∑Nn
j=1wijφKSj∑Nn

j=1 wij
, (4.8)

where

wij = max
(
0, rφ −

∥∥(x i − x j)
′∥∥) . (4.9)

The transformed distance (x i − x j)
′ is obtained by rotating the Cartesian coordinate system

to align with the material boundary’s local coordinate system such that

(x i − x j)
′ =


t1

t2

n


i

(x i − x j) ; n i =
∇φKSj∥∥∇φKSj∥∥ . (4.10)

Here n is the unit normal assumed to align with the rotated y-axis in 2D and rotated z-axis in

3D at node i, and t1 and t2 are unit tangent vectors at node i. Together, these three vectors

form an orthonormal basis. Naturally in 2D the transformation vector consists of t1 and n

which form an orthonormal basis in 2D. The smoothing radius vector rφ is chosen to include

the influence of nodes lying in the plane of the tangent vectors and exclude points lying

along the normal vector. However since this operation is performed on a fixed background

mesh it is important that the smoothing radius in the normal direction is greater than the

mesh size to ensure inclusion of enough nodes in the support domain as shown in Figure 4.8.

Note, there currently exist smoothing filters such as the isotropic filter in (4.1). Fig-

ure 4.8 presents a comparison between the support domains for isotropic and anisotropic

smoothing. An isotropic smoothing when using geometric primitives would result in extreme

undesirable mass loss as further confirmed by comparisons made in 2D and 3D in Figure

4.9. There is however some unavoidable mass loss using anisotropic smoothing too. This
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Figure 4.8: Support domain for isotropic smoothing (left) and anisotropic smoothing (right).
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Figure 4.9: Material boundaries in 2D (left) and 3D (right).

is a result of the requirement of having a smoothing radius in the normal direction greater
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than the mesh size, as discussed above. The anisotropic smoothing is successful in produc-

ing smooth boundaries analogous to the perimeter penalty in (4.3). However compared to

the perimeter penalty the anisotropic smoothing does not suffer from possible non-convexity

issues. One such scenario is depicted in Figure 4.10 wherein the perimeter of the structure

may be reduced by either breaking it off or straightening out the boundary. When using

the perimeter penalty there is no way to control how (in what direction) the perimeter is

regulated. This is not the case with anisotropic smoothing.

Anisotropic smoothing

𝜙(𝒙) = 0
Perimeter penalty

𝜙(𝒙) = 0

𝜙(𝒙) = 0𝜙(𝒙) = 0

𝜙(𝒙) = 0

Figure 4.10: Difference in affect of perimeter penalty (left) and anisotropic smoothing (right).

Generating an LSF requires mapping the geometric design variables to (4.7) which are

in turned mapped to (4.8). As can be imagined φKSj belonging to a particular node may

affect the value of φi in (4.8) at multiple nodes. This would require repeated computation of

(4.7) and (4.5) for every such node. Depending on the mesh size such an approach to updating

(4.8) based on the geometric design variables can quickly get very expensive. We thus propose

a multilevel filter framework for parallel computing in order to save computational time and

memory when employing multiple levels of filter/functions for computing an LSF, details of

which are provided in Appendix D.1. Such a framework also opens many avenues for testing

various combinations of filter schemes for regularizing an LSF.

It is common for modular research-based optimization frameworks to not have knowl-

edge about the connectivity of the finite element mesh. Such a code was the basis of the
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research in this thesis. Consequently the gradient of the level set field required for evaluating

the normal to a surface is computed using a point cloud as in meshfree methods [79], details

of which have been provided in Appendix D.2.

4.2.3 Numerical examples

The proposed approach for performing topology optimization using geometric primi-

tives is applied to 2D static linear elastic and 3D steady and unsteady thermo-elastic systems.

Due to the fairly simple nature of the configuration of geometric primitives in the 3D prob-

lems studied in this thesis, a need for anisotropic smoothing was not observed. Consequently

the 3D examples presented do not make use of (4.8). This work does not use the ghost penalty

approach discussed in 2.1.1, and thus to mitigate issues with ill-conditioning caused by an

extremely small (or large) ratio of intersected areas within an intersected element, we use

the geometric preconditioning scheme introduced in [68].

4.2.3.1 Application to linear elasticity

Symmetry plane 3

1?

2

𝐹

?

𝐹

1

Figure 4.11: Problem setup for two-bar truss problem (left) and MBB beam problem (right).
All dimensions in m.

We solve the benchmark topology optimization problems of two-bar truss and Messer-

schmitt - Bölkow-Blohm (MBB) beam in 2D to verify the applicability of the proposed

approach. The problem setup of these benchmark problems is presented in Figure 4.11.

The problem domain is discretized using a mesh size of h = 0.02m. For both problems
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the load applied is F = 1N . The linear elastic material considered has a Young’s modulus

of E = 1N/m2 and a Poisson’s ratio of ν = 0.3. For the MBB problem we model half of

the domain, and symmetry boundary conditions are imposed along the plane x = 3. The

optimization problem involves minimizing the compliance of the structure subject to a con-

straint on the structural volume, V 1. Often the number of ribs required to form the optimized

structure is lower than the number of ribs present in the initial design. For instance only 2

ribs should be sufficient to form the optimized structure in the two-bar truss optimization

problem. However, to start from a non-biased design we populate the initial design with 12

ribs as shown in Figure 4.12. In such a scenario some ribs tend to disappear. If disconnected

from the structure these ribs no longer add information to the shape sensitivities and thus

are left unattended by the optimizer. However the presence of such partially disappearing

ribs introduces oscillations in the LSF especially on coarser meshes as shown in Figure 4.13.

Hence as a part of the objective we penalize the area of the ribs that fall below a certain

threshold. The optimization problem formulation is then stated as

min
s

J (u(s)) + cs

i=nrib∑
i=1

I(Ai)4aibi

s.t.

{
V 1(s)
V (s)
− cV ≤ 0

, (4.11)

where the indicator function for penalizing the area of the ribs, I(Ai), is defined as

I(Ai) =

 1 if 4aibi ≤ Ath

0 otherwise
. (4.12)

The weight of penalty on the area of the ribs is given by cs . In addition to the constraints

listed in (4.11) we make use of box constraints to bound the geometric design variables such

that smink ≤ sk ≤ smaxk for k-th design variable. The complete list of parameters for the

two-bar truss and MBB beam optimization problems is presented in Table 4.2.

The initial design for both problems consists of 12 ribs, 6 placed horizontally and 6

vertically to form a 2D grid of ribs. Figure 4.12 presents the evolution of the design for both
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Table 4.2: Parameter list for topology optimization of two-bar truss problem. All dimensions
in m.

Parameter Two-bar truss MBB beam

rx, ry 2.4 h, 1.04 h 4.8 h, 1.2 h
cs 1000 0
Ath 9 h2 -
cv 0.3 0.5

xminc , xmaxc 0, 2 0, 3
yminc , ymaxc 0, 1 0, 1
amin, amax 0, 2.24 0, 3.2
bmin, bmax 0, 0.2 0, 0.1
θmin, θmax 0, 3.15 0, 3.15

GCMMA step size 0.005 0.002
GCMMA constraint penalty 102 102

problems. A final structure confirming to the node-based topology optimization solution of

these problems is obtained, with non-oscillatory boundaries. The number of independent

ribs in the final design is less than 12 as some ribs were deemed useless in regards to their

contribution to the structural design and thus completely removed by the optimizer. In

the absence of penalizing the design variables, small ribs are found to be leftover from the

optimization process which was the case for the MBB beam optimization problem. These

ribs however do not cause oscillations in the LSF as they are completely overlapped by a

larger rib. Convergence is achieved in a reasonable number of optimization steps for both

problems as demonstrated by convergence plots for the two-bar truss problem and the MBB

beam problem in Figures 4.14 and 4.15 respectively. The volume constraint for the MBB

beam problem remains inactive throughout the optimization process.

Note, the two bar truss problem is a symmetric problem. However as can be observed

in Figure 4.12, the design evolves in an asymmetrical manner. In the author’s experience

such an asymmetric design evolution is a combination of, choice of optimization algorithm,

as well as numerical noise which depending on the optimization problem may significantly

influence the shape sensitivities.
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Figure 4.12: Evolution of ribs for two-bar truss problem (left) and MBB beam problem
(right).
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ℎ = 0.04𝑚

Figure 4.13: Oscillations in LSF for two-bar truss problem caused by partially disappearing
ribs (left), and elimination of oscillations in LSF upon penalization of area of ribs (right).
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Figure 4.14: Convergence plots for two-bar truss problem.

4.2.3.2 Application to thermo-elastic systems

We extend the proposed framework for topology optimization using geometric prim-

itives to steady and unsteady thermo-elastic systems. To verify the applicability of the
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Figure 4.15: Convergence plots for MBB beam problem.
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Figure 4.16: Passive thermo-elastic problem setup (left) and mesh with fiber inclusions
(right).

proposed framework to thermo-elastic systems we first study a passive optimization problem

setup wherein high conductive and low expanding stiff fibers are placed in a low conductive

and high expanding soft matrix. Figure 4.16 presents the problem setup along with relevant

boundary conditions and initial placement of fiber inclusions in the matrix. The problem

domain is 30mm by 6mm by 3mm. A mesh size of h = 0.3mm is used. The goal of the

optimization problem is to find the optimal position of fiber inclusions given a target dis-

placement profile subject to a constraint on the fiber volume V 1. The optimization problem

is then stated as

min
s

√∫
z=3

(Utarget − uz)2dx ′

s.t.

{
V 1(s)
V (s)
− cV ≤ 0

; Utarget = 0.024x− 0.0022x2 (4.13)
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The target displacement was chosen knowing that such a profile can be obtained using

the passive thermo-elastic problem setup. Choosing an obtainable profile serves as a good

verification test. The material properties associated with the fiber and matrix, and other

problem parameters are presented in Table 4.3.

Table 4.3: Parameter list for topology optimization of steady passive thermo-elastic problem.
All dimensions in mm.

Parameter Value

Ef , Em 69× 103, 13 N/mm2

νf , νm 0.3, 0.45
αf , αm 2.1× 10−5, 2.7× 10−4 K−1

kf , km 0.205, 2× 10−4 W/(mm K)
cv 0.3

xminc , xmaxc 0, 30
yminc , ymaxc 0, 6
zminc , zmaxc 0, 3
amin, amax 0, 30
bmin, bmax 0, 6
cmin, cmax 0, 3
θmin, θmax 0, 3.15

GCMMA step size (up to 50 iterations) 0.005
GCMMA step size (50-th iteration onward) 0.0025

GCMMA constraint penalty 102

Figure 4.17 presents the evolution of the design for select iterations, alongside the

corresponding uz plots. The matrix having a higher thermal expansion coefficient has a

tendency to expand more than the fiber inclusions. Thus the optimizer places one of the

fiber inclusions lower than the other in order to achieve the desired curved displacement

profile. A comparison between the target displacement and displacement profile of the

converged design is presented in Figure 4.18. Figure 4.19 presents the convergence of the

objective. Oscillations were noticed in convergence after 50 optimization steps. Hence inner

iterations were performed using the GCMMA from iteration 50 onward. Inner iterations

in the GCMMA are MMA subproblems wherein the objective and constraint functions are
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Figure 4.17: Deformed cross-sectional view with fibers reflected about axis of symmetry
(left) and uz plotted on cross-sectional view of deformed design (right).
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Figure 4.18: Comparison of displacement profile against target displacement.
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Figure 4.19: Convergence plots for steady passive thermo-elastic optimization problem.

replaced by certain convex separable functions [123]. The optimal solution to the subproblem

produces a lower objective value than the previous step thus guaranteeing convergence to

some local minima. The volume constraint remained inactive throughout the optimization

process. Since the current problem is solved to steady state the temperature throughout the

domain remains constant at 353K. The fiber inclusions essentially act as stiff inserts in a

soft surrounding. Hence the problem is described as passive.

𝑢𝑧 = 0

𝑢𝑥 = 0

symmetry, 𝑢𝑦 = 0

𝑇 𝑡 = 0 = 273𝐾

𝑥𝑦

𝑧

𝑞𝑁 = 0.5𝑊/𝑚𝑚2

Figure 4.20: Active thermo-elastic problem setup (left) and mesh with fiber inclusions (right).

We now apply the proposed optimization framework to study an unsteady optimization

problem setup wherein high conductive and low expanding stiff fibers are placed in a low

conductive and high expanding soft matrix. Figure 4.20 presents the problem setup along

with relevant boundary conditions and initial placement of fiber inclusions in the matrix.

Problem domain is 30mm by 6mm by 3mm. A mesh size of h = 0.3mm is used. The heat
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flux, qN is applied for 3 seconds with ∆t = 1. The goal of the optimization problem is to find

the optimal position of fiber inclusions given a target displacement profile at t = 3s subject

to a constraint on the fiber volume V 1. The optimization problem is then stated as

min
s

√∫
z=3

(Utarget − uz(t = 3))2dx ′

s.t.

{
V 1(s)
V (s)
− cV ≤ 0

; Utarget = ax; a =

 10−4 ∀x ≤ 15mm

10−3 ∀x > 15mm
. (4.14)

Problem parameters from Table 4.3 are used. Any additional problem parameter or param-

eters inconsistent with the previous example are listed in Table 4.4.

Table 4.4: Parameter list for topology optimization of unsteady active thermo-elastic prob-
lem. All dimensions in mm.

Parameter Value

(ρC)f , (ρC)m 2.5× 10−3, 1.3× 10−3 J/(mm3 K)
GCMMA step size 0.005

Figure 4.21 presents the evolution of the design for select iterations. Figure 4.22 present

a comparison of the temperature and displacement plots between the initial and converged

designs. One of the fiber inclusions is connected to the heat source. This fiber inclusion

having a high conductivity heats up faster than the surrounding matrix. The fiber inclusion

owing to it’s stiffness does not bend. However the surrounding matrix upon heating deforms

greatly causing the rest of the structure, including the disconnected fiber inclusions, to bend

upwards in a straight line. Thus minimizing the objective requires the optimizer to adjust

the slope of the deformed section of the structure which is in turn controlled by the size of

the fiber inclusion connected to the hear source. Figure 4.23 presents the convergence of the

objective. As in the previous example oscillations (not visible in Figure 4.23) were noticed

in convergence after 70 optimization steps. Hence inner iterations were performed using the

GCMMA from iteration 70 onward. The volume constraint remained inactive throughout

the optimization process. In the current problem the fiber inclusion connected to the heat
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Figure 4.21: Deformed cross-sectional view with fibers reflected about axis of symmetry
(left) and uz plotted on cross-sectional view of deformed design (right). Deformation of
design amplified by a factor of 75.
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Figure 4.22: Comparison of the temperature and displacement plots between the initial (left)
and converged (right) designs. Deformation of design amplified by a factor of 75.
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Figure 4.23: Convergence plots for unsteady active thermo-elastic optimization problem.

source acts as an actuator controlling the deformation of the rest of the structure based on

it’s shape and size. Hence the problem is described as active.

4.2.4 Outlook and future work

Initial design

𝛿𝑠

Initial design

𝛿𝑠

Optimal design

+

Hybrid 

approach

Figure 4.24: Future work should focus on a hybrid approach.

We extended the concept of geometric primitive-bases topology optimization using im-

mersed boundary methods in 3D. We further introduced the concept of a localized anisotropic
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filter for obtaining geometric primitives with smooth surfaces by filtering the LSF only in

the in-place directions of the structure. The anisotropic filter presents a solution to the non-

convexity issue presented by the concept of penalizing the perimeter for smoother geometries.

The anisotropic filter was shown to successfully remove oscillations from the material bound-

ary. The proposed framework was successfully applied to two benchmark problems in linear

elasticity. We further applied the proposed framework to steady and unsteady thermo-elastic

systems in 3D. Smooth convergence of objective and constraints was observed for all exam-

ples presented. Inner iterations with the GCMMA were required to achieve convergence of

design in 3D. The issue of extremely localized sensitivities resulting in slow design evolution

is alleviated through the use of geometric primitives.

For future work a hybrid approach should be considered wherein the design variables

comprise of nodal level set values as well as geometric primitives, as shown in Figure 4.24. It is

expected that such an approach will render immense flexibility to the topology optimization

process. While the geometric primitives will aid in the fast evolution of the overall design,

the nodal design variables will help provide a local control over the material geometry, thus

combining the best of both worlds. However special treatment of the optimization process

as well as additional regularization may be required based on the resultant LSF.
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Summary

This thesis has introduced certain advances made towards making the XFEM a more

viable and reliable design and optimization tool. This section summarizes the overall con-

tributions and their implications on future research.

(i) We presented a robust semi-analytical approach to computing the shape sensitivities

using the XFEM. Advantages and challenges of the proposed approach in the context

of Heaviside-enriched XFEM were discussed. We further studied the dependency of

the shape sensitivities on spatial resolution, interface conditions, and smoothness of

the LSF. In addition a possible issue with computing continuum shape sensitivities

using a discretized consistent approach was brought to light. Future research should

be aware of the implications when using the discretized consistent approach. Con-

sequently studies should focus on ways to incorporating the continuum consistent

approach in the XFEM framework.

(ii) The issue of overestimation of stresses using the XFEM was addressed using the

ghost penalty method combined with a novel XFEM informed stabilization scheme.

Accurate and robust computation of stresses and stress sensitivities was reported.

The proposed approach is a significant improvement over preexisting approaches.

Researchers should feel confident about using the XFEM for stress-based optimiza-

tion. Furthermore researchers should look at exploring the concept of ghost penalty

for other physics in the context of topology optimization.
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(iii) Building on some recent studies we demonstrated 3D static and transient XFEM-

based topology optimization using geometric primitives. We further presented a

regularization approach in the context of geometric primitives-based topology opti-

mization wherein non-smooth boundaries were eliminated using an anisotropic filter.

It is expected that future studies will develop hybrid approaches wherein the design

variables are a combination of nodal level set values as well as geometric primitives.

Such an approach will render immense flexibility to the topology optimization pro-

cess using the LSM-XFEM, in terms of possessing fast convergence rates as well as

local control of the material geometry.

(iv) Unrelated to topology optimization, as a contribution to design using the XFEM, we

developed the concept of active stochastic subdomains which is integral to modeling

problems with either a weak or a strong discontinuity across a random material

interface. The convergence and accuracy of the proposed method is demonstrated

using problems with continuous and discontinuous solutions in the problem domain.

However the approach was found to be too expensive given its intrusive nature.

It would be unrealistic to expect future studies to extend the proposed approach

to 3D for multiple uncertain parameters. Non-intrusive approaches might be more

practical.

In conclusion, the LSM-XFEM approach for designing and optimizing coupled multi-

physics problems has shown great promise, as is evident by the variety of physics it has been

applied to in the literature. The limited research in LSM-XFEM-based topology optimization

is a result of the non-intuitive implementation of an XFEM-based framework in research

codes. Moreover XFEM suffers from stabilization issues, and LSM from regularization issues.

Regardless, the advantages of the approach (such as crisp geometry and accurate resolution

of physics) outweigh the drawbacks. Furthermore, most issues surrounding stabilization in

XFEM have solutions in the literature, and research on LSM-based topology optimization is
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on the rise with new papers being published on a weekly basis.



www.manaraa.com

Bibliography

[1] Kazuhisa Abe, Shunsuke Kazama, and Kazuhiro Koro. A boundary element approach
for topology optimization problem using the level set method. International Journal
for Numerical Methods in Biomedical Engineering, 23(5):405–416, 2007.

[2] Joe Alexandersen, Niels Aage, Casper Schousboe Andreasen, and Ole Sigmund. Topol-
ogy optimisation for natural convection problems. International Journal for Numerical
Methods in Fluids, 76(10):699–721, 2014.

[3] G. Allaire and F. Jouve. Minimum stress optimal design with the level set method.
Engineering analysis with boundary elements, 32(11):909–918, 2008.

[4] Gregoire Allaire, Francois Jouve, and Anca-Maria Toader. Structural optimization
using sensitivity analysis and a level-set method. Journal of Computational Physics,
194(1):363–393, 2004.

[5] Chandrasekhar Annavarapu, Martin Hautefeuille, and John E Dolbow. A robust
Nitsche’s formulation for interface problems. Computer Methods in Applied Mechanics
and Engineering, 225–228:44–54, 2012.

[6] Chandrasekhar Annavarapu, Martin Hautefeuille, and John E Dolbow. Stable impo-
sition of stiff constraints in explicit dynamics for embedded finite element methods.
International Journal for Numerical Methods in Engineering, 92(2):206–228, 2012.

[7] JS Arora and Q Wang. Review of formulations for structural and mechanical system
optimization. Structural and Multidisciplinary Optimization, 30(4):251–272, 2005.
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Abstract This paper is concerned with the modeling of
heterogeneous materials with uncertain inclusion geometry.
The eXtended stochastic finite element method (X-SFEM) is
a recently proposed approach for modeling stochastic partial
differential equations defined on random domains. The X-
SFEM combines the deterministic eXtended finite element
method (XFEM) with a polynomial chaos expansion (PCE)
in the stochastic domain. The X-SFEM has been studied for
random inclusion problems with a C0-continuous solution
at the inclusion interface. This work proposes a new formu-
lation of the X-SFEM using the Heaviside enrichment for
modeling problems with either continuous or discontinuous
solutions at the uncertain inclusion interface. The Heavi-
side enrichment formulation employs multiple enrichment
levels for each material subdomain which allows more com-
plex inclusion geometry to be accurately modeled. A PCE
is applied in the stochastic domain, and a random level set
function implicitly defines the uncertain interface geometry.
The Heaviside enrichment leads to a discontinuous solution
in the spatial and stochastic domains. Adjusting the support
of the stochastic approximation according to the active sto-
chastic subdomain for each degree of freedom is proposed.
Numerical examples for heat diffusion and linear elastic-
ity are studied to illustrate convergence and accuracy of the
scheme under spatial and stochastic refinements. In addi-
tion to problems with discontinuous solutions, the Heaviside
enrichment is applicable to problems with C0-continuous
solutions by enforcing continuity at the interface. A higher
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1 Structural Mechanics and Concepts Branch, NASA Langley
Research Center, Hampton, VA, USA
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convergence rate is achieved using the proposed Heaviside
enriched X-SFEM for C0-continuous problems when com-
pared to using a C0-continuous enrichment.

Keywords X-SFEM · Level set method · Heaviside
enrichment · Polynomial chaos · Uncertainty quantification

1 Introduction

Computational methods for the propagation of uncertainties
through models governed by partial differential equations
are powerful tools for the prediction of a system’s response,
model validation, and engineering design. For heterogeneous
composite materials, the material layout has uncertainty due
to fabrication techniques. In order to relate the effective prop-
erties to the material layout, the uncertainty in geometry
requires methods that account for the random material inter-
faces. This work proposes an approach to model problems
with either a weak or a strong discontinuity across a random
material interface. Examples from the first class of problems
include perfectly bonded interfaces, while examples from the
latter class of problems include imperfectly bonded inter-
faces, crack analysis, and the phonon Boltzmann transport
model for heat diffusion at the submicron scale. The proposed
approach introduces the Heaviside enrichment function in
the eXtended stochastic finite element method (X-SFEM)
[12], which extends the eXtended finite element method
(XFEM) [10] to the stochastic domain using a polynomial
chaos expansion (PCE) [25] to approximate the degrees of
freedom based on the random parameters characterizing the
interface position.

Following the work by Hansbo and Hansbo [4], the Heav-
iside enriched XFEM is a deterministic approach for solving
problems with strong discontinuities across an embedded
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interface without requiring a mesh which conforms to the
interface geometry.TheHeaviside enrichment strategy is also
applicable to problems with a weak discontinuity across the
material interface but requires the enforcement of the conti-
nuity of the solution by an interface constraint method such
as the stabilized Lagrange multiplier and Nitsche methods
[5,18]. TheXFEMformulation in thiswork implementsmul-
tiple enrichment levels to consistently approximate the solu-
tion in all disconnected regions of the same phase [8,21]. The
use of additional enrichment levels accurately models neigh-
boring intersected elements as well as elements intersected
more than once. This implementation of the XFEM is partic-
ularly useful for modeling problems with a varying interface
geometry, as mesh regeneration is avoided and robustness is
added for more complex interface configurations.

A Monte Carlo (MC) simulation combined with the
XFEM may be utilized to solve the stochastic problem. In
Savvas et al. [14], the homogenization of randommedia with
varying inclusion geometry is studied using the XFEM cou-
pledwithMCsimulation.While theXFEMavoids remeshing
for each realization of the inclusion geometry, numerous
XFEM analyses may be required for sampling the vary-
ing inclusion geometry. An alternative is the X-SFEM [11],
which requires a single solution of a larger system of equa-
tions. The X-SFEM was recently introduced for modeling
problems with C0-continuous solutions at random material
interfaces. The spatial domain is discretized by the XFEM
and extended to the stochastic domain by a PCE based on
the random parameters characterizing the uncertain interface
geometry. The dimension of the stochastic domain is deter-
mined by the finite set of random parameters chosen to char-
acterize the interface geometry. Each spatial degree of free-
dom is approximated in the stochastic space using a PCE, and
a Galerkin projection leads to a finite system of equations to
be solved for the expansion coefficients. The Wiener-Askey
PCE [25] defines polynomial sets which are orthogonal with
respect to the probability density functionof the randompara-
meters. The application of PCEmay lead to exponential con-
vergence rates if the degrees of freedom vary smoothly with

respect to the random parameters. However, for non-smooth
behavior of the degrees of freedom in the stochastic domain,
the PCE may converge slowly or fail to converge. The
X-SFEMwas studied for problemswithC0-continuous solu-
tions at the random material interface with various enrich-
ment functions in [6]. This work proposes a new formulation
of the X-SFEM in order to solve problems with either a
weakly or strongly discontinuous solution at the random
material interface using the Heaviside enrichment function.

Building on the work in [6,9], a method for extending the
Heaviside enriched XFEM to the stochastic domain using
a PCE is proposed. A random level set function is utilized
to implicitly define the interface position, which depends
on a set of random parameters. The Heaviside enrichment
allows modeling of weak and strong discontinuities across
the material interface, and leads to degrees of freedom that
are discontinuous in the stochastic domain. Here a degree of
freedom refers to an unknown in the XFEM discretization.
Each degree of freedom is a function of the random inputs
and is approximated by a PCE in the stochastic domain. The
discontinuous behavior in the stochastic domain results from
each degree of freedom being nonzero for only a portion of
the stochastic domain. To illustrate this discontinuous behav-
ior, consider the bimaterial bar example in Fig. 1a. The two
material subdomains are given asD1 and D2, and the uncer-
tain interface location is defined by r(ξ) where ξ is a vector
of random parameters. Each degree of freedom is nonzero
(active) over part of the stochastic subdomain depending on
the variation of the interface. An example of a degree of
freedom (dof ) variation for 2 random parameters is shown
in Fig. 1b in which the active subdomain is a rectangle in the
stochastic domain.

The X-SFEM generally uses a set of polynomial basis
defined globally over the stochastic space for the approxima-
tion of the spatial degrees of freedom. Due to the non-smooth
behavior and possibly local behavior of the degrees of free-
dom in the stochastic domain, such a global basis is not
well suited. This work proposes adjusting the support of the
PCE basis functions for the approximation of each spatial

Fig. 1 a Bar example with an
uncertain interface. b An active
stochastic subdomain for 2
random parameters

(a) (b)
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degree of freedom. The support of the PCE basis functions
are adjusted to match the active stochastic subdomain, e.g.,
the gray region in the ξ1-ξ2 plane in Fig. 1b. The adjustment
of the PCE basis functions depends on the characterization of
the interface geometry and is determined by the spatial mesh
as well as the random level set function. Adjusting the sup-
port of the PCE basis functions increases accuracy, and the
system remains well-conditioned for higher approximation
orders of the PCE.

The focus of this study is on discontinuous and C0-
continuous example problems in heat diffusion and linear
elasticity. While the proposed method is designed to solve
problems with a strong discontinuity, C0-continuous prob-
lems are included in order to compare the performance of
the proposed approach with existing methods. The remain-
der of the paper is organized as follows: Sect. 2 defines the
model problem and random level set function. The Heaviside
enriched XFEM is presented in Sect. 3. The extension of the
XFEM to the stochastic domain is described in Sect. 4. Four
numerical examples are presented in Sect. 5 to describe and
examine the performance of the proposed method.

2 Model problems

TheproposedX-SFEMapproach is illustratedwith themodel
problem depicted in Fig. 2 for heat diffusion and linear elas-
ticity. The model problem contains an inclusion embedded
in a matrix, and the geometry of the inclusion is uncertain.
While the model problem consists of a material with a sin-
gle random inclusion for simplicity, the proposed method
is applicable to multiple inclusions. The level set method is
used to define the random interface geometry. This section
describes the setup and the governing equations for themodel
problem.

2.1 Domain description

The governing equations are solved over the spatial domain
D ⊂ R

n , and the probability space is denoted by (Σ,B, P).

Fig. 2 Schematic of themodel problemwith a single random inclusion

Here, Σ is the set of elementary events, B is the σ -algebra
of events, and P is the probability measure. The random
inclusion geometry is characterized by a finite set of ran-
dom parameters, ξ : Σ → Ω ⊆ R

d . The spatial domain
is comprised of two non-overlapping material subdomains,
such that D = D1(ξ) ∪ D2(ξ). The material interface has
zero thickness and is defined as Γ (ξ) = D1(ξ)∩D2(ξ). The
boundary of D is comprised of a Dirichlet boundary, ∂DD ,
and a Neumann boundary, ∂DN .

2.2 Random level set

The level set method [15] is used to implicitly define the ran-
dom interface geometry. This approach is frequently used
in the XFEM to define geometric features [2,19,20,23]. A
random level set function is introduced to define the ran-
dom interface geometry for the model problem. The random
interface location, Γ (ξ), is defined by the zero contour of
a random level set function φ(x, ξ) : D × Ω → R. The
properties of φ(x, ξ) are given by

φ(x, ξ) < 0 if x ∈ D1(ξ)

φ(x, ξ) > 0 if x ∈ D2(ξ)

φ(x, ξ) = 0 if x ∈ Γ (ξ). (1)

Consider a finite element mesh, Th , for D consisting of ele-
ments with edges that do not necessarily coincide with Γ .
The random level set function is discretized according to Th ,

φ(x, ξ) =
∑

i∈I
Mi (x)φi (ξ), (2)

where Mi (x) are the nodal basis functions, I is the set of all
nodes in the mesh, and φi (ξ) is the value of the random level
set function at node i . For this work, the basis functions used
to interpolate the level set function, Mi (x), are the same as
the basis functions used to interpolate the solution, Ni (x),
introduced in Sect. 3.2.

In this work, the characterization of the random interface
geometry is assumed to be known. For realistic problems,
the random interface characterization often requires a col-
lection of measurement data for numerous outcomes of the
interface geometry [16,17]. The measurement data may be
collected from various experimental approaches, such as
optical images and micrographs. The approach used in this
work to define the random level set function is by computing
φi (ξ) as realizations of the interface geometry. An example
of this approach uses the signed distance function, defined as

φ(xi , ξ) = ±min ‖xi − xΓ (ξ)‖ (3)

where xΓ (ξ) is the interface location, xi is the spatial coor-
dinate at node i , and ‖ · ‖ denotes the L2-distance. With
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this approach, the random level set function is constructed
by defining the interface location as a function of ξ . Another
example of defining the random level set function is discussed
in Sect. 5.4.

2.3 Heat diffusion with random geometry

The stationary heat diffusion equation is solved for a single
inclusion with random interface geometry. The model heat
diffusion problem consists of finding the random temperature
field, u(x, ξ), such that the following holds almost surely in
Ω for phase i = 1, 2,

−∇ · (k∇ui ) = f in Di (ξ)

(k∇ui ) · ni = qT on ∂Di ∩ ∂DN

ui = uT on ∂Di ∩ ∂DD , (4)

where k is the thermal conductivity of an isotropic material,
f is the volumetric heat source, and ui denotes the restriction
of u toDi . A temperature uT is specified on ∂DD , and a heat
flux qT is specified on ∂DN with an outward unit normal to
Di denoted by ni . The conductivity is defined as

k(x, ξ)=
{
0<kmin <k1<kmax<∞ if x ∈ D1(ξ)

0<kmin <k2<kmax<∞ if x ∈ D2(ξ)
, (5)

with constants k1 and k2. For well-posedness, k1 and k2 are
boundedby aminimumandmaximumvalue.A thermal resis-
tance is assumed to exist at the interface, which may be due
to imperfect contact or a thin coating, leading to a discontin-
uous solution. The flux at the interface for the discontinuous
solution is defined as

q1 = α(u1 − u2) on Γ −(ξ)

q2 = −α(u1 − u2) on Γ +(ξ), (6)

where q1 and q2 are the heat flux at the interface in the phase
1 and phase 2 domains, respectively, and α is the unit thermal
conductance at the interface. The phase 1 side of the inter-
face is denoted by Γ −, and the phase 2 side of the interface
is denoted by Γ +. For imperfect contact, α represents the
conductivity across the interface with α = 0 representing
no conduction. For a thin layer, α = kΓ /tΓ , where kΓ and
tΓ are the conductivity and thickness of the interface layer.
The solution is C0-continuous for perfect thermal contact
at the interface. In this case, continuity of the solution and
flux across the random interface is enforced by the following
interface conditions:

�u� = u1 − u2 = 0 on Γ (ξ)

k1∇u1 · n1 + k2∇u2 · n2 = 0 on Γ (ξ). (7)

2.4 Linear elasticity with random geometry

The model linear elasticity problem consists of finding the
random displacement field, u(x, ξ), such that the following
holds almost surely in Ω for i = 1, 2,

−∇ · (σ i ) = b in Di (ξ)

σ i · ni = td on ∂Di ∩ ∂DN

ui = ud on ∂Di ∩ ∂DD (8)

where σ i is the stress tensor and ui is the displacement solu-
tion restricted to Di . The applied body forces are denoted
by b, and prescribed displacements ud and tractions td are
imposed on ∂DD and ∂DN , respectively. The constitutive
relation for a linear elastic material is defined as

σ i = C i : ε(ui ) in Di (ξ), (9)

where C i is the elasticity tensor and ε is the strain tensor.
Assuming small strains and displacements, the kinematics
model is defined as

ε = 1

2
(∇ui + ∇uTi ). (10)

A crack or other imperfect bond at the interface leads to a dis-
continuous displacement. Zero traction at the crack interface
is assumed, defined as

σ 1n1 = 0 on Γ −(ξ)

σ 2n2 = 0 on Γ +(ξ). (11)

For a perfect bond at the interface, which gives a C0-
continuous solution, continuity of the displacement and
normal stress across the random interface require

�u� = u1 − u2 = 0 on Γ (ξ)

σ 1n1 + σ 2n2 = 0 on Γ (ξ). (12)

3 Heaviside enriched X-FEM

The XFEM [10,19] uses an enrichment function to locally
capture the non-smooth solution at the interface without
requiring a mesh which conforms to Γ . Following the work
by Hansbo and Hansbo [4] and Terada [21], a generalized
Heaviside enrichment strategy is adopted which employs
multiple enrichment levels [7–9]. The generalized Heavi-
side enrichment provides great flexibility in solving a broad
range of partial differential equations with multiple phases
for any choice of nodal basis functions. An advantage to
using the Heaviside enrichment is that there are no issues
with blending elements, which may exist for C0-continuous
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enrichments. Also, neighboring intersected elements and ele-
ments intersected more than once can be modeled accurately
using the generalized Heaviside enrichment strategy. This
section defines the weak form of the governing Eqs. (4)–
(8) and the generalized Heaviside enrichment approach for
solving the deterministic forms of the model problem.

3.1 Weak form

The weak form of the governing equations for heat diffusion
and linear elasticity are constructed by multiplying (4) and
(8) by a set of admissible test functions and integrating over
D. The space V = H1(D) is the Hilbert space consisting of
scalar functions with square integrable first derivatives and
V0 = {v ∈ V : v|∂DD = 0}. Let u ∈ V be the solution and
v ∈ V0 be an admissible test function. The weak form of the
deterministic heat diffusion problem is stated as: Find u ∈ V
such that u = ut on ∂DD and

∫

D
(κ∇u) · ∇vdx −

∫

D
f vdx −

∫

∂DN

qtvds + RΓ = 0

∀v ∈ V0, (13)

where s denotes the boundary of D and RΓ includes the
interface conditions from either (6) or (7) depending on
whether the solution is discontinuous or continuous across
the interface. For the discontinuous problem in which a ther-
mal resistance exists at the interface,

RΓ =
∫

Γ −
q1v1dΓ −

∫

Γ +
q2v2dΓ , (14)

where vi denotes the restriction of v to Di for phase i =
1, 2, and the fluxes q1 and q2 are defined in (6). For a C0-
continuous solution at the interface, an interface constraint
method [1,5,18] is used to enforce the solution continuity
across the interface. Two common constraint formulations
for enforcing continuity across material interfaces are the
stabilized Lagrange and Nitsche methods, which are defined
in [7,8] for application to heat diffusion and linear elasticity.

The space W = H1(D) is the Hilbert space consisting
of vector functions with square integrable first derivatives
and W0 = {w ∈ W : w|∂DD = 0}. Let u ∈ W be the
displacement andw ∈ W0 be an admissible test function. The
weak form of the deterministic elasticity problem is stated
as: Find u ∈ W such that u = ud on ∂DD and

∫

D
σ : ε(w)dx −

∫

D
b · wdx −

∫

∂DN

td · wds + RΓ = 0

∀w ∈ W0, (15)

where RΓ includes the interface conditions from (11) or (12)
for problems with a discontinuous or continuous solution

across the interface, respectively. For discontinuous prob-
lems with a zero traction at the interface,

RΓ = 0. (16)

ForC0-continuous problems inwhich a perfect bond exists at
the interface, the stabilized Lagrange and Nitsche methods
can be used to enforce solution continuity at the interface
[7,8].

3.2 Approximation

The finite element mesh for D, Th , consists of elements
with edges that do not necessarily coincide with Γ . For a
two phase problem with one level set function, an inter-
sected element has a region corresponding to each of the
two phases. The support of a nodal basis function includes
multiple elements. If the support of a nodal basis function
is intersected by the interface, there may be regions of the
same phase which are not connected. A Heaviside enrich-
ment function is implemented in the XFEM formulation,
such that each disconnected region of the same phase is
approximated by an independent set of nodal basis functions.
The space V and W are comprised of the spaces for all dis-
connected regions and written as V = {v : vi ∈ H1(D)} and
W = {w : wi ∈ H1(D)}. Here, the subscript i represents the
set of disconnected regions for each phase. The approxima-
tion of u(x), denoted by uh(x), for two phases is defined as

uh(x) =
M∑

m=1

(
H(−φ(x))

∑

i∈I
Ni (x)u(1)

i,mδ(1),i
mr

+H(φ(x))
∑

i∈I
Ni (x)u(2)

i,mδ(2),i
mr

)
, (17)

where I is the set of all nodes in Th , Ni (x) is the nodal
basis function, M is the maximum number of enrichment
levels, and u(q)

i,m is the degree of freedom at node i for phase

q ∈ {1, 2}. The Kronecker delta δ
(q),i
mr selects the active

enrichment level r for node i and phase q such that only
one set of degrees of freedom are used for interpolating the
solution at the point x, therefore satisfying the partition of
unity principle. The Heaviside function is given by

H(z) =
{
1 z > 0
0 z ≤ 0

. (18)

In this formulation, a single basis function, Ni (x), is used
at each node. Additional nodal degrees of freedom are added
for each phase and enrichment level. Although (17) is written
using the maximum possible number of enrichment levels,
the specific number of enrichment levels at each node is deter-
mined by the spatial mesh and a priori knowledge of the
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interface location. The number of enrichment levels required
depends on the number of disconnected regions of the same
phase included in the support of Ni (x). A key advantage of
employing multiple enrichment levels using the Heaviside
enrichment is that accurate solutions can be determined for
neighboring intersected elements and elements intersected
more than once using a single level set function, adding
robustness for problems involving moving or changing inter-
face geometry. Further details of this enrichment strategy are
provided in [7,8].

4 Extended stochastic FEM

The extended stochastic FEM (X-SFEM) [13] extends the
XFEM to a stochastic framework using a PCE to model
problems defined on random domains. The X-SFEM for
C0-continuous problems with random inclusions was intro-
duced in [11]. The X-SFEM was studied for heat diffusion
with a single random inclusion [6], specifically focusing on
the accuracy and the smoothness of the degrees of free-
dom as a function of the random variables using various
C0-continuous enrichment functions. Requirements for a
successful enrichment function were presented as well as a
partitioning strategy for accurate integration in the probabil-
ity domain. Here, the X-SFEM is studied for both continuous
and discontinuous problems with random inclusions by
extending the Heaviside enriched formulation described in
Sect. 3 to the stochastic domain using a PCE. The PCE
approximates the variation of the spatial degrees of freedom
with respect to the random parameters ξ . In this work, a
degree of freedom refers to the unknowns in the XFEM sys-
tem of equations, and stochastic or expansion coefficients
refer to the unknowns in the X-SFEM system of equations as
described in Sect. 4.3. A PCE with global basis is well suited
for a C0-continuous enrichment function when the varia-
tion of the degrees of freedom is smooth and defined over
the entire stochastic domain. However, a PCE with global
basis is not well suited when using the Heaviside enrichment
function in the X-SFEM. For the Heaviside enrichment, each
degree of freedom is discontinuous as it is defined only on a
subdomain of Ω . This subdomain is referred to as the active
stochastic subdomain. Insteadof aPCEwithglobal support in
the stochastic domain, adjusting the support of the PCE basis
functions to account for the variation in the active stochastic
subdomains is proposed. This section defines the active sto-
chastic subdomains, adjustment of the PCE basis functions,
and construction of the system of equations.

4.1 Active stochastic subdomains

The active stochastic subdomain for each degree of freedom,
denoted as Ω

(q)
i,m ⊆ Ω , defines the stochastic subdomain

where the degree of freedom u(q)
i,m is nonzero. The active

stochastic subdomain for each degree of freedom is deter-
mined by the intersection of φ(ξ) = 0 and the support of
the nodal basis function in the XFEM approximation. For
the linear basis functions used in this work, φ j (ξ) = 0 is
computed for the nodes of the elements sharing node i to
determine the active stochastic subdomains. Each degree of
freedom at node i is active for one or more regions created by
φ j (ξ) = 0. Typically, each degree of freedom is active over a
single connected subdomain. However, a degree of freedom
may be active over disconnected regions depending on the
discretization. In this case, additional enrichment levels are
added such that each degree of freedom is active over a single
connected subdomain.

The variation of the degrees of freedom is smooth over
the active stochastic subdomain for which a polynomial
approximation is well suited. As will be described, a PCE is
constructed on the active stochastic subdomain using poly-
nomial functions. For d = 1 and when ξ : Ω → [−1, 1],
Ω

(q)
i,m is defined by the interval [a, b] ⊆ [−1, 1]. For d >

1, the active stochastic subdomain is approximated by a
hyperrectangle, Ω̂

(q)
i,m , and the product of one-dimensional

polynomials are used to construct the PCE on Ω̂
(q)
i,m . A mini-

mum bounding rectangle approximates the active stochastic
subdomain, such that Ω̂

(q)
i,m = [a j , b j ] ⊆ [−1, 1]d where

j = 1, . . . , d. For d = 1, Ω̂
(q)
i,m = Ω

(q)
i,m . An example illus-

tration of an approximate active stochastic subdomain for
d = 1 and d = 2 is depicted in Fig. 3a and b. As dis-
cussed in the next section, a rotated Ω̂

(q)
i,m may be required to

closely approximate the area of the active stochastic subdo-
main, which is depicted in Fig. 3c.

The simple bar example of Fig. 1 is used to illustrate
the active stochastic subdomains for d = 1. The bar has

(b) (c)

(a)

Fig. 3 Active stochastic subdomain for a d = 1,b d = 2, and c rotated
in d = 2
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length L = 1 and is modeled using 5 elements. Let the
interface position depend on one random parameter r =
0.2ξ + 0.5, where ξ is distributed uniformly over [−1, 1],
i.e., ξ ∼ U [−1, 1]. The random level set function is given
as φ(ξ) = x − r(ξ). The active stochastic subdomain for the
degree of freedom interpolating the phase 2 solution at node
3, denotedΩ

(2)
3,1, is defined by the interval [−1, 0.5], andΩ

(1)
4,1

is defined by the interval [−0.5, 1]. The intersection points
ξ = 0.5 and ξ = −0.5 are computed from φ4(ξ) = 0 and
φ3(ξ) = 0, respectively. Note that the other two active sto-
chastic subdomains for nodes 3 and 4, Ω

(1)
3,1 and Ω

(2)
4,1 are

defined by the interval [−1, 1]. The example in Sect. 5.1 fur-
ther illustrates the active subdomains for d = 1 and depicts
the variation of the degrees of freedom.

4.2 Approximation

In the X-SFEM, the Heaviside enrichment function and the
degrees of freedom in (17) are functions of the random vari-
ables ξ . For theHeaviside enriched formulation, theX-SFEM
approximation of u(x, ξ) is defined as

uh(x, ξ)=
M∑

m=1

(
H(−φ(x, ξ))

∑

i∈I
Ni (x)u(1)

i,m(ξ)δ(1),i
mr I (1)

i,m(ξ)

+H(φ(x, ξ))
∑

i∈I
Ni (x)u(2)

i,m(ξ)δ(2),i
mr I (2)

i,m(ξ)

)
, (19)

where the indicator function I restricts the approximation
of each degree of freedom u(q)

i,m(ξ) to the active stochastic

subdomain Ω̂
(q)
i,m . The active enrichment level is denoted by

r in δ
(q),i
mr and depends on ξ . The indicator function is defined

as

I (q)
i,m (ξ) =

{
1 if ξ ∈ Ω̂

(q)
i,m

0 otherwise
. (20)

Each degree of freedom, u(q)
i,m(ξ), is approximated in the

stochastic space using a PCE of order p. A compact nota-
tion is introduced to define the set of degrees of freedom as
un(ξ), where n is an index to the set {i,m, q}which consists
of all nodes, enrichment levels, and phases. The stochastic
approximation for a degree of freedom is defined by

un(ξ) =
MPC∑

j=1

Ln
j (ξ)anj , (21)

where anj are the stochastic coefficients to be determined

and Ln
j are polynomials defined on Ω̂n . For random vari-

ables with the independent uniform distributions considered
in this work, multi-dimensional Legendre polynomials form

an orthogonal basiswith respect to the uniformmeasure, such
that

〈Li , L j 〉 =
∫

[−1,1]d
Li (ξ)L j (ξ)P(ξ)dξ = 〈L2

i 〉δi j , (22)

where δi j denotes the Kronecker delta and 〈·〉 denotes the
mathematical expectation operator. The uniform measure is
given as P(ξ) = ( 12 )

d I[−1,1]d , where I[−1,1]d is the indicator
set of the hypercube [−1, 1]d with d random variables. The
Legendre polynomials in (22) are the standard basis defined
on Ω . The polynomials Ln

j in the PCE (21) are defined

on Ω̂n , and are constructed by transforming the standard
Legendre polynomials.While randomvariableswith uniform
distributions are considered in this work, local orthogonal
polynomial bases for other distributions may be constructed
numerically [22].

The proposed approach to construct Ln
j follows the multi-

element generalizedPCE [22], inwhich a single element inΩ

is defined by Ω̂n . The stochastic approximation is restricted
to a single element to minimize the number of expansion
coefficients to be determined by the system of equations. The
L j are scaled by a linear transformation from Ω to Ω̂n and
normalized to construct Ln

j . The uniform random parameter

ξ is defined on [−1, 1], and ξ̃ is a uniform random parameter
defined on [a, b]. For d = 1, constructing the Ln

j on the
active stochastic subdomain uses the linear transformation

ξ̃i = bi − ai
2

ξi + bi + ai
2

for i = 1, . . . , d. (23)

Since 〈Li , L j 〉 = 1
2i+1δi j , the normalization constant is

given as
√
2i + 1. The transformed and normalized poly-

nomials are defined on Ω̂n by

Ln
j (ξ̃ ) = √

2 j + 1L j (ξ(ξ̃ )), (24)

and the Ln
j are zero outside of Ω̂n . For d > 1, the multi-

dimensional set of polynomials is constructed by the tensor
product of one-dimensional polynomials with total order up
to p [24]. The number of stochastic coefficients required in
(21) is defined as

MPC = (p + d)!
p!d! . (25)

A comparison of the one-dimensional Legendre poly-
nomials on [−1, 1] and the transformed and normalized
Legendre polynomials on [a, b] = [−0.75, 0] is shown in
Fig. 4 for p = 3. The transformed basis, Ln

j , is computed
for each degree of freedom and avoids poorly conditioned
systems resulting from small active stochastic subdomains.

Additionally for d > 1, the minimum bounding hyper-
rectangle and the active stochastic subdomain should have
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Fig. 4 a Legendre polynomials on [−1, 1], and b transformed and normalized Legendre polynomials on [−0.75, 0]

(a) (b)

Fig. 5 a Example sliver configuration of an active stochastic subdo-
main for d = 2, and b the rotated coordinate system for defining the
minimum bounding rectangle

similar volumes. Otherwise an ill-conditioned system may
result. Here, the focus is on d = 2, in which a minimum
bounding rectangle is defined for the active stochastic subdo-
main. If the active stochastic subdomain for d = 2 is a sliver,
as depicted in Fig. 5a, the area of the minimum bounding
rectangle does not closely match the area of the active sto-
chastic subdomain. A rotated coordinate system is required
in order for the bounding rectangle to closely approximate
the active stochastic subdomain. The rotation for d = 2 is
defined by the angle α, and the rotated coordinate system is
ξ ′ = Tξ . With α specified as the angle from the positive
ξ1 axis to the longest bounding box edge, the rotation to the
reference coordinate system is defined as

T =
[
cos(−α) − sin(−α)

sin(−α) cos(−α)

]
. (26)

The rotated coordinate system for the example sliver con-
figuration is shown in Fig. 5b. In this case, the minimum
bounding rectangle matches the active stochastic subdomain
using the rotated coordinate system. The transformed basis,
Ln
j , is computed using the rotated coordinate system. While

the rotation is needed for defining the active stochastic sub-
domain for some degrees of freedom, ξ is used throughout
the rest of the paper without reference to ξ ′. The rotated coor-
dinate system is applied for the numerical examples in this
workwhen the ratio of theminimum bounding rectangle area
to the active area is greater than 2 for d = 2.

The uniform distribution of ξ is not preserved under a
rotation, therefore the Legendre basis in ξ ′ is not orthogonal
with respect to the measure of ξ ′ on Ω̂n when the rotation is
utilized. However, it is straightforward to see that this basis
is orthogonal with respect to the uniform density over Ω̂n . In
the subsequent formulations, the expectations are therefore
taken with respect to the uniform density over Ω̂n when a
coordinate rotation is performed. Additionally, the rotation
may lead to an active stochastic subdomain which extends
beyond Ω , as illustrated in Fig. 3c. Since Ω̂n ⊆ Ω , the Ln

j
are computed only within Ω .

Finally, active stochastic subdomains with small areas
may lead to an ill-conditioned system. In order to avoid the
ill-conditioning, the area of the active stochastic subdomain,
AΩ , is required to be greater than a minimum value. A tol-
erance is implemented such that the coefficients of the PCE
for degrees of freedom with AΩ < Atol are constrained to
zero. By doing so, the variation of the degree of freedom in
Ω is neglected. A tolerance value of Atol = 10−6 was imple-
mented for the numerical examples in this work, for which
degrees of freedom were constrained only in Example 3.

4.3 System of equations

In this section, the system of equations that results from the
spatial and stochastic discretizations is described. The semi-
discretized system of equations defined in (13) and (15) can
be written in matrix form as

K (ξ)u(ξ) − f (ξ) = 0, (27)
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where K is the conduction or stiffness matrix, f is the load
vector, and u represents the vector of nodal degrees of free-
dom. The number of spatial degrees of freedom is denoted by
NFE , and the dependency on the random inclusion geometry
is included by the random vector ξ . Following the approach
outlined in [6], the system of equations is constructed to
solve for the expansion coefficients in (21). However, the
transformed polynomial basis Ln

j is specific to each spatial
degree of freedom in this work. The polynomial expansion of
each degree of freedom (21) is introduced into (27), and the
Galerkin projection of the residual leads to a coupled system
of equations for the vector of coefficients, a j , i.e.,

MPC∑

k=1

〈K i j (·)Li
k(·)L j

l (·)〉ak − 〈 f i (·)Li
l (·)〉 = 0,

l = 1, . . . , MPC . (28)

The (MPC · NFE )× (MPC · NFE ) system of equations is
written in compact form as

K s â − f s = 0, (29)

where K s and f s are assembled from each spatial element
integrated over Ω . The vector â collects all of the expansion
coefficients for the vector u(ξ) as defined in (21). Each l th

sub-vector component of the element vector f es is defined as

( f es)l = 〈 f ei (·)Li
l (·)〉 for l = 1, . . . , MPC , (30)

and each (k, l) block of the element matrix K e
s is defined as

(K e
s)kl =〈K e

i j (·)Li
k(·)L j

l (·)〉 for k, l=1, . . . , MPC . (31)

Here, (i, j) are indices for the degrees of freedom belonging
to the nodes of element e in the finite element mesh, and
(i, j) are not summed. The polynomial basis Li is defined
on Ω̂ i .

The element quantities K e
s and f es are computed by inte-

grating over the spatial and stochastic domains. The spatial
domain is partitioned for an intersected element for accurate
integration over D, which is standard practice in the XFEM.
The partition is constructed to align with the interface, as
described in [2,7]. The integration over Ω also requires a
partition for accuracy, since K e(ξ) and f e(ξ) vary piece-
wise smoothly with ξ . Partitioning of Ω is also standard
practice for the X-SFEM. However, the proposed approach
for using the Heaviside enrichment requires a specific parti-
tioning technique, which is described as follows. The domain
in which the response varies smoothly is bounded by the
intersection of φi (ξ) = 0 with the support of the basis func-
tions. Therefore, φi (ξ) = 0 for the degrees of freedom at the
nodes of the element and its neighbors are used to define the

stochastic partition.Additionally, Ω̂i is considered in the con-
struction of the stochastic partition, as it defines the nonzero
subdomain for the PCE. The element stochastic partition is
constructed using the union of φi (ξ) = 0 for the nodes of
the element and its neighbors, as well as Ω̂i for the nodes
of the element. Each element stochastic partition is poten-
tially different, as well as each Ω̂i , which leads to increased
computational costs. However, constructing the element sto-
chastic partition and performing the element integration are
well suited for efficient parallel processing.

In this work, a triangulation is used for the partition of
the 2D spatial domain. The level set field is interpolated by
linear shape functions. For integration in the spatial domain,
the triangular partition of an intersected element aligns with
the interface. Therefore the numerical integration in the spa-
tial domain is exact for a properly chosen integration rule
determined by the weak form of the governing equation. For
d = 1, the partition of the stochastic domain is constructed
usingpoints according toφi (ξ) = 0where i is the set of nodes
of the element and its neighbors. For d = 2, the stochastic
partition is constructed using a triangulation of the bounding
rectangle edges of the active stochastic subdomains for the
element nodes aswell asφi (ξ) = 0,where i is again the set of
nodes of the element and its neighbors. An example partition
of the stochastic domain is illustrated in Fig. 6a for d = 1
with 4 points for φi (ξ) = 0. Figure 6b depicts a triangulated
stochastic partition for d = 2 with 2 edges for φi (ξ) = 0 and
2 minimum bounding rectangles for Ω̂n . For integration in
the stochastic domain, a local error is introduced from solv-
ing φi (ξ) = 0 for d = 1 and d = 2. Additionally, the zero
level set curves are assumed to be linear for d = 2. Note that
the integration rule for the stochastic domain depends on the
chosen order of the PCE.

5 Numerical examples

Four numerical examples are presented to study the con-
vergence and accuracy of the proposed Heaviside enriched
X-SFEM. The first two numerical examples have one ran-
dom parameter and an analytical solution for investigating
the convergence of the method. The inclusion geometry
in the third and fourth numerical examples is character-
ized by two random parameters in order to demonstrate
the proposed method for problems with a two-dimensional
stochastic domain. Example problems with continuous and
discontinuous solutions are studied in this section. Solv-
ing problems with continuous solutions using the Heaviside
enriched X-SFEM allows a comparison with the X-SFEM
using aC0-continuous enrichment [11]. The first three exam-
ples have C0-continuous solutions while the solution is
discontinuous in the fourth numerical example. The C0-
continuous enrichment used in the following examples was
proposed in [11].
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Fig. 6 Example stochastic
partition for a d = 1 and b
d = 2. The triangulation for
d = 2 is denoted by the dashed
red lines

(a) (b)

Fig. 7 Problem description for Example 1, shown with mesh size
h = 1

5.1 Example 1: diffusion in a two-material bar

The first numerical example solves the heat diffusion prob-
lem (4) for the two-material bar shown in Fig. 7. The bar
has length L = 20 with a centered inclusion of length 2r(ξ).
Thematerial interface is described by one random parameter,
such that r(ξ) = 5 + 2.5ξ and ξ has a uniform distribution
U (−1, 1). The inclusion geometry for r = 5 is shaded in
Fig. 7, and the dashed lines represent the variation of the
inclusion geometry. The material conductivity inD1 andD2

is k1 = 2 and k2 = 20, respectively. The temperature at the
left boundary is specified as u1 = 0, and the temperature at
the right boundary is specified as u2 = 100. While the prob-
lem is one-dimensional in the physical domain, this example
is modeled using 20 quadrilateral elements. The stabilized
Lagrange and Nitsche methods with a constraint factor of
k1 + k2 are used to enforce solution continuity at Γ . The
solutions using these methods were nearly identical for the
example problem, and the results shown use the stabilized
Lagrange method. The solution in the spatial domain for a
specific value of ξ is piecewise linear over three subdomains.
The chosen spatial discretization reproduces the exact solu-
tion and contributes zero error to the approximation.

Two studies are performed for this example. First, the
degree of freedom approximation as a function of ξ is exam-
ined and compared to solving multiple XFEM solutions for
different interface positions. Second, the convergence of the
solution error with respect to the stochastic approximation
order p is determined. This example problem was studied in
[6] using the X-SFEM with the C0-continuous enrichment.

In order to show the variation of the degrees of freedom
as a function of ξ , the deterministic solution is solved for

ξ = −1 to ξ = 1 in steps of �ξ = 0.01. The deterministic
solution is computed using the XFEM by solving multiple
problems for various interface positions defined by r(ξ). It is
noted that a preconditioner is required in the XFEM for vary-
ing interface positions in order to avoid an ill-conditioned
system of equations due to possible element intersections
with a small ratio of volumes on either side of the inter-
face [7]. A preconditioner was not used in the X-SFEM. The
variation of the degrees of freedom for the node located at
x = (5, 0) are shown in Fig. 8. The X-SFEM approximation
for p = 1 is shown for comparison. The support of the PCE
basis for the stochastic approximation is defined by the active
subdomain. Note that the stabilized Lagrange (and Nitsche)
interface constraint formulation couples the phase 1 and 2
degrees of freedom. Increasing the order of the PCE reduces
the error in the X-SFEM solution, as shown in the second
part of this numerical example.

The accuracy of the X-SFEM solution is measured by the
relative error defined by

e = ‖u − û‖L2(Ω;L2(D))

‖u‖L2(Ω;L2(D))

, (32)

where u denotes the analytical solution and û denotes the
X-SFEM solution. The relative error is computed for each
stochastic approximation order, p, and the convergence of
the error is shown in Fig. 9. The error convergence for the
proposed Heaviside enriched X-SFEM is compared with
the X-SFEM using the C0-continuous enrichment. While
the error for the Heaviside enriched X-SFEM is higher, the
convergence rate for both approaches is the same. The dif-
ference in the magnitude of the error occurs because the
C0-continuous enrichment leads to an approximation which
is one polynomial degree higher in Ω than the Heaviside
enrichment.

5.2 Example 2: linear elastic bimaterial plate

The second numerical example solves the linear elasticity
problem (8) for the circular inclusion shown in Fig. 10.
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Fig. 8 The a phase 1 and b phase 2 degree of freedom values as a function of ξ for the node located at x = (5, 0) using the XFEM and X-SFEM
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Fig. 9 Convergence of the relative error for the X-SFEM with the C0

and Heaviside enrichment

This problem was presented in [11] using a C0-continuous
enrichment function. A circular plate of radius b = 2 has
a centered circular inclusion of radius r . The radius of the
inclusion is determined by a single random parameter with a
uniform distributionU (−1, 1). The inclusion radius is given
by r = 1.26+0.54ξ . The elastic modulus and Poisson’s ratio
of the plate are E1 = 10 and ν1 = 0.3. The elastic modulus
and Poisson’s ratio of the inclusion are given by E2 = 1,
ν2 = 0.25. A radial displacement is prescribed at the bound-
ary of the plate, such that ud = x. The stabilized Lagrange
method [8] is used to enforce continuity at the interface with
a constraint factor of 100(E1 + E2). This problem is studied
using the proposedHeaviside enrichment inX-SFEMaswell
as the C0-continuous enrichment proposed in [11].

Two studies are performed for this example. First, the
behavior of the degrees of freedom in the stochastic domain
is compared using the C0-continuous and Heaviside enrich-
ment function for a deterministic sweep. The second study
examines the accuracy of the X-SFEM solution and com-
pares the convergence for the Heaviside and C0-continuous
enrichment functions.

As in the first example, the XFEM solution is determined
for numerous values of ξ in order to examine the behavior of

Fig. 10 Problem description for Example 2, shown with mesh size
h = 0.1

the degrees of freedom in the stochastic domain. The deter-
ministic problem is solved for ξ = −1 to ξ = 1 with steps of
�ξ = 0.01. The degrees of freedom for the x-displacement
at x = (0.9, 0) is shown in Figs. 11 and 12 using the
C0-continuous and Heaviside enrichment functions, respec-
tively. As discussed in [6] and shown here, the variation of
the degrees of freedom using the C0-continuous enrichment
is not smooth with respect to ξ . The peaks correspond to the
intersection of the interfacewith a node, thereforemore peaks
occur as the spatialmesh is refined.While some improvement
in smoothness occurs with spatial mesh refinement, a smooth
behavior of the degrees of freedom depends on a converged
spatial mesh for the C0-continuous enrichment. Using the
Heaviside enrichment, the behavior of the degrees of freedom
is piecewise smooth in the stochastic domain for any spatial
mesh size, as depicted in Fig. 12 for three spatial mesh sizes.
The value of ξ at which the degree of freedombecomes active
changes with mesh size. A second level degree of freedom
exists at this node for phase 2 using theHeaviside enrichment,
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Fig. 11 a The regular and b enriched degree of freedom using the C0 enrichment function for the x-displacement at x = (0.9, 0) as a function of
ξ with spatial mesh refinement
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Fig. 12 The level 1 degrees of freedom for a phase 1 and b phase 2 using the Heaviside enrichment function for the x-displacement at x = (0.9, 0)
as a function of ξ with spatial mesh refinement

which is due to disconnected regions of phase 2 occurring for
−0.667 ≤ ξ ≤ −0.656. The additional degree of freedom
varies smoothly over this small active stochastic subdomain
and is zero elsewhere.Adescription ofwhy additional enrich-
ment levels may be required for the same phase is provided
in [7].

The analytical solution [19] is used to compute the rel-
ative error (32) in the X-SFEM solution. A comparison of
the solution error using the C0-continuous and Heaviside
enrichment functions is shown in Fig. 13 for three spatial
mesh sizes. A higher convergence rate is achieved using the
Heaviside enrichment. The spatial error dominates as each
curve flattens as p is increased using the Heaviside enrich-
ment.

5.3 Example 3: two parameter material inclusion

The third numerical example studies the proposed Heaviside
enriched X-SFEM for an inclusion geometry defined by two
random parameters, resulting in a two-dimensional stochas-
tic domain. The example problem solves the heat diffusion

0 2 4 6 8

10-4

10-3

10-2
h=0.1
h=0.05
h=0.025

e

p

Fig. 13 Error convergence using the X-SFEM with respect to p
for Example 2. Solid and dashed lines represent the Heaviside and
C0-continuous enrichment functions, respectively

problem (4) for the random material inclusion with d = 2
depicted in Fig. 14. This problem was presented in [6] using
aC0-continuous enrichment function. A square domain with
a side length of 20 has a random inclusion with radius r(θ, ξ)

defined by two randomparameterswith independent uniform
distributions U (−1, 1). The thermal conductivity of D1 and
D2 are k1 = 2 and k2 = 20, respectively. The stabilized
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Fig. 14 Problem description for Example 3, shown with mesh size
h = 1

Lagrangemethod is used for enforcing continuity at the inter-
face with a constraint factor of k1 + k2. The temperature on
the left and right side is specified as uT = 0 and uT = 100.
A tolerance of Atol = 10−6 is used for constraining to zero
the coefficients of the PCE for degrees of freedomwith small
active stochastic subdomains. The radius of the inclusion is
given by

r(θ, ξ) = r̄ + σ

2∑

k=1

1

k
ξk

[
cos(k2θ) + sin(k2θ)

]
, (33)

where r̄ = 4 and σ = 1. The angle θ is measured counter-
clockwise from the positive x-axis.

The convergence of the X-SFEM solution with spatial and
stochastic refinement is studied. Since an analytical solution
does not exist for this problem, the expectation of the solution
is computed and compared with a reference solution. The
expectation of the X-SFEM solution is defined by

‖u‖2E =
〈∫

D
(k∇u)T∇udx

〉
. (34)

TheMonteCarlo (MC) reference solution is computed froma
set ofXFEMsolutions using a random sampling of ξ . A least-
squares polynomial chaos regression [3] is used to determine
the reference energy norm using the XFEM for the interface
geometry generated by 50,000 random samples of ξ with 4
mesh sizes (h = {1, 0.5, 0.25, 0.125}). Forh = 0.125,which
was the smallest mesh size used for a MC reference solution,
the mean energy norm of the reference solution is 157.523
with a 95 % confidence interval of ±0.00402. The compari-
son of theX-SFEMenergy norm and the reference solution is
shown in Fig. 15 for 3 spatial mesh sizes (h = {1, 0.5, 0.25}).
For each spatial mesh size, the Heaviside enriched X-SFEM
solution converges quickly to the reference solution as the
order of the PCE is increased. A higher convergence rate
for each spatial mesh size is achieved when compared to
theC0-continuous enrichment functions explored in [6]. The

p
1 2 3 4 5

157.3

157.4

157.5

157.6

157.7
h=1
h=0.5
h=0.25
h=0.125

Fig. 15 Energy norm of the approximate solution for Example 3. The
X-SFEM approximation and reference solution are represented by solid
and dashed lines, respectively, for h = {1, 0.5, 0.25}

Fig. 16 Problem description for Example 4, shown with mesh size
h = 1

stochastic approximation converges for order p = 2. Addi-
tionally, convergence to the reference solution is seen with
spatial mesh refinement.

5.4 Example 4: two parameter ellipsoidal inclusion

The Heaviside enriched X-SFEM for a problem with a dis-
continuous solution across the random material interface
with a two-dimensional stochastic domain is studied. The
fourth numerical example solves the heat diffusion prob-
lem (4) for a material with an ellipsoidal inclusion shown
in Fig. 16. A square domain with a side length of 20 has a
single random ellipsoidal inclusion. The inclusion geometry
is characterized by two random parameters, and the solution
at the interface is discontinuous due to a thin interface layer
with a thermal conductance of α = 10. The flux at the inter-
face is defined according to (6). The thermal conductivity of
D1 and D2 are k1 = 2 and k2 = 20, respectively. The tem-
perature on the left and right side of the domain is specified
as uT = 0 and uT = 100. The random inclusion geome-
try is defined by the implicit representation of an ellipse and
two random parameters with independent uniform distribu-
tionsU (−1, 1). Using the equation of an ellipse, the level set
function is defined as
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p
0 1 2 3 4 5

164

164.2

164.4

164.6

164.8

165
h=1
h=0.5
h=0.25
h=0.125

Fig. 17 Energy norm of the approximate solution for Example 4. The
X-SFEM approximation and reference solution are represented by solid
and dashed lines, respectively, for h = {1, 0.5, 0.25}

φ(x, ξ) = r2 − a(ξ1)x
2
1 − b(ξ2)x

2
2 . (35)

where r = 5 and a(ξ1) = 1 + 0.5ξ1 and b(ξ2) = 1 +
0.5ξ2. Using this definition instead of the signed distance
function, the level set function is linear with respect to ξ . As
a consequence, the partition for stochastic integration exactly
aligns with φi (ξ).

The convergence of theHeaviside enrichedX-SFEMsolu-
tion with increasing p is studied using a reference solution.
The reference solution is computed with a least-squares
polynomial chaos regression using the XFEM solutions
for 50,000 samples of ξ with 4 spatial mesh sizes (h =
{1, 0.5, 0.25, 0.125}). The mean energy norm for the XFEM
reference for h = 0.125 is 164.355 with a 95 % confidence
interval of ±0.0606. The mean energy norm of the X-SFEM
solution (34) is compared with the reference solution in
Fig. 17 for the three spatial mesh sizes of (h = {1, 0.5, 0.25}.
The additional mesh size of h = 0.125 is included for
the XFEM reference solution to show convergence. The X-
SFEM energy norm converges quickly. Similar to Example
3, the stochastic approximation converges at approximately
p = 2. However, the X-SFEM solution does not converge to
the corresponding reference solution for each spatial mesh
size. When compared with Example 3, the reference energy
norm has a larger variability as indicated by the confidence
interval. The spatial error is dominating for the coarser mesh
sizes of h = 1 and h = 0.5 with p > 2. A certain spatial
resolution is required for convergence with a low order of the
stochastic approximation. A similar requirement was identi-
fied in [6] using the C0-continuous enrichment function for
continuous problems.

6 Conclusions

A Heaviside enriched extended stochastic FEM has been
developed for solving problems with uncertain inclusion
geometry which have either a continuous or discontinuous

solution across the material interface. The Heaviside enrich-
ment leads to a discontinuous solution in the stochastic
domain, such that the degrees of freedom are nonzero (or
active) on a subdomain of the stochastic domain. The active
stochastic subdomain for each degree of freedom is deter-
mined by the spatial mesh and the random level set function.
The stochastic approximation is constructed on the active sto-
chastic subdomain for each degree of freedom, which leads
to an accurate solution and well-conditioned system of equa-
tions. A minimum bounding hyperrectangle approximates
the active stochastic subdomain, and the basis polynomials in
the stochastic approximation are transformed and normalized
onto the hyperrectangle. TheproposedX-SFEMis best suited
for a low number of random parameters due to the compu-
tational cost associated with construction of the polynomial
bases. Approximations of high dimensional stochastic func-
tions with discontinuities is a challenging and active area of
research.

The convergence and accuracy of the proposed method
was demonstrated for example problemswith continuous and
discontinuous solutions at the interface. Studying problems
with continuous solutions allowed a comparison to an exist-
ing approach. The proposed Heaviside enriched X-SFEM
leads to a higher convergence rate for problems with con-
tinuous solutions when compared to using a C0-continuous
enrichment function. The degrees of freedom are smooth
with respect to the random parameters regardless of the spa-
tial mesh size. Due to the smoothness of the degrees of
freedom, convergence in the stochastic space occurswith low
orders of the polynomial approximation. Additional advan-
tages of using the proposed Heaviside enrichment approach
for problems with an uncertain interface configuration are
that neighboring intersected elements and elements inter-
sected more than once can be modeled accurately, and there
are no issues with blending elements.
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Abstract This paper investigates the behavior of shape sen-
sitivities within the context of the eXtended Finite Element
Method (XFEM) using a Heaviside enrichment strategy,
wherein the shape derivative is computed by the adjoint
method. The Heaviside function is discontinuous by con-
struction. This feature of the enrichment function presents
advantages as well as challenges in the computation of
shape sensitivities, both of which are discussed in detail
in this paper. Using continuum and discrete approaches,
we present the derivation of analytical shape sensitivities
with respect to the design variables which define the design
geometry. We propose a robust semi-analytical approach
to computing the shape sensitivities, which provides great
ease of implementation as compared to fully analytical
approaches. The behavior of the XFEM-based shape sensi-
tivities is analyzed using linear heat diffusion examples in
2D, and an incompressible fluid flow example in 3D. We
compare XFEM-based shape sensitivities against shape sen-
sitivities obtained through the classical approach of using
a body-fitted mesh. It is found that the former are not as
smooth as those obtained using a comparable body-fitted
mesh. This discrepancy is shown to be an outcome of the
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discretization error of the design geometry on a background
mesh and is not a consequence of the approach by which the
XFEM-based shape sensitivities are computed.

Keywords Shape sensitivity · Adjoint method ·
Generalized shape optimization · Heaviside enrichment ·
eXtended finite element method

1 Introduction

Shape sensitivities quantify the effect that a change in shape
has on the response of the design. Shape sensitivity anal-
ysis in general comprises of computing the derivative of a
response function (e.g. strain energy, stress, perimeter, etc.)
with respect to parameters that describe the correspond-
ing domain geometry. The classical method of computing
shape sensitivities, also referred to as boundary variations,
has been extensively studied, for example, by Simon (1980),
Jameson (1988) and Sokolowski and Zolésio (1992). One
important application of shape sensitivity analysis is gra-
dient computation for design optimization. The scope of
improving the performance of designs due to changes in
shape led to the development of shape optimization meth-
ods; see, for example, Sokolowski and Zolésio (1992) and
Mohammadi and Pironneau (2001). In shape optimiza-
tion, the position of each point on the material boundaries
is a function of the shape design variables. Shape opti-
mization of internal and external boundaries is of great
importance to improving the detailed design of engineering
systems against many criteria, such as stiffness or buckling
in structural mechanics, or fluid drag and lift forces in fluid
dynamics.

Over the years, researchers used various strategies
to define the geometry of material domains. Classical
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approaches for parametrization of shapes were either based
on CAD models or were CAD-free, both of which pro-
vide an explicit representation of the material geometry.
CAD models include the use of Bézier curves, B-splines
and NURBS for the representation of material geometry (cf.
Bletzinger et al. 1991, Haasemann et al. 2011). CAD-free
parametrization involves describing the material geome-
try directly using finite element meshes as described by
Kenway et al. (2010) and Firl et al. (2013). In contrast,
Osher and Sethian (1988) introduced the concept of Level
Set Methods (LSM) for defining the material boundaries
implicitly by iso-contours of a level set field. As with
explicit approaches mentioned above, this implicit function
allows for a crisp description of the boundaries as discussed
by Dijk et al. (2013). Mapping the geometry to a mechanical
model is performed through either a Lagrangian (deforming
mesh) or an Eulerian (fixed mesh) approach. Figure 1 pro-
vides a comparison of different mapping approaches as the
design domain undergoes a shape change.

The computation of shape sensitivities using Lagrangian
approaches has been studied in detail. Initial studies used
nodal coordinates of a finite element mesh as the design
variables, as discussed by Haftka and Grandhi (1986). A
disadvantage of this approach, as pointed out by Chen and
Tortorelli (1997), was the large number of design variables
and mesh degradation. Methods involving mesh parame-
terizations (Tortorelli et al. 1994) and filtering techniques
(Firl et al. 2013) were studied to overcome these issues (see
also Azegami et al. 1997 and Mohammadi and Pironneau
2004). However, these Lagrangian-based approaches still
face drawbacks with the primary issues being that the

finite element mesh cannot deform much and that topolog-
ical changes are not possible. Re-meshing overcomes these
issues, but it increases the overall complexity and compu-
tational costs. Furthermore, Schleupen et al. (2000) showed
that adapting the finite element mesh during the optimiza-
tion process leads to an inconsistent sensitivity analysis and
may affect the convergence rate of the optimization process.

In contrast to Lagrangian methods, recently developed
Eulerian approaches formulate shape sensitivity problems
by projecting the design onto a fixed mesh. Examples of
such approaches include density based methods (cf. Wang
et al. 2003; Allaire et al. 2004, 2005), fictitious domain
methods (cf. Haslinger et al. 2001 and Kim and Chang
2005), and immersed boundary methods (cf. Duysinx et al.
2006, Wei et al. 2010, Najafi et al. 2015). These tech-
niques have shown to mitigate the issues associated with
Lagrangian-based methods.

In this paper we adopt an Eulerian approach that utilizes
the eXtended Finite element Method (XFEM), developed
by Moës et al. (1999), to model the physical response of
the mechanical problem. The XFEM is an immersed bound-
ary technique that uses an enrichment function to locally
capture the non-smooth solution of state variable fields
along the material interface, without requiring a conform-
ing mesh. Depending on the type of discontinuity various
enrichment strategies have been developed as described by
Fries and Belytschko (2010). The design geometry in the
current work is defined using the LSM. This combination is
referred to as the LSM-XFEM approach, and is often classi-
fied as a generalized shape optimization approach (Duysinx
et al. 2006). This classification stems from the fact that

Fig. 1 Examples of geometry
mapping undergoing shape
change

(a) (b) (c)
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the approach allows for topology modifications as existing
holes can merge or disappear. The LSM-XFEM approach
has been used in the context of shape and topology opti-
mization by Duysinx et al. (2006), Wei et al. (2010), Kreissl
and Maute (2012), and Li et al. (2012), among others. Note
that although the current work makes use of the LSM, it
is also applicable to other methods of defining the design
geometry.

The majority of previous XFEM-based studies on shape
sensitivities make use of C0-continuous enrichment func-
tions, such as the one introduced by Moës et al. (2003)
which do not allow for strong discontinuities within the
solution field. A recent study in the context of C0-
continuous enrichment functions was performed by Noël
et al. (2016), on developing analytical sensitivity analysis
for shape optimization of bi-material structures. Some of
the first studies considering strong discontinuities were pre-
sented by Duysinx et al. (2006) who adopt a semi-analytical
approach for the computation of the sensitivities in material-
void problems. When perturbing the level set field in the
vicinity of a node, they ignore the contribution of newly
intersected elements. This special treatment of intersected
elements is bound to degrade the accuracy of the computed
shape sensitivities. An analytical sensitivity study to address
material-material interface problems in multi-component
system was presented by Zhang et al. (2012) wherein the
sensitivities are derived from a material-material interface
model. As a consequence for material-void problems, their
approach requires an approximation of the voids by a weak
material which increases the overall computational cost. In
contrast, Wei et al. (2010) use a Heaviside function in the
form of a standard discontinuous enrichment strategy for
2D material-void problems. However, this enrichment strat-
egy is not guaranteed to consistently approximate the state
variable fields for configurations with complex intersection
patterns as discussed by Makhija and Maute (2014).

Following the work of Terada et al. (2003) and Hansbo
and Hansbo (2004), we adopt a generalized Heaviside
enrichment strategy with multiple enrichment levels. The
use of multiple enrichment levels ensures that the solution
field is interpolated in a consistent manner, and avoids arti-
ficial coupling in the presence of disconnected phases as
discussed by Tran et al. (2011) and Makhija and Maute
(2014). The Heaviside enrichment is a step enrichment and
is discontinuous by construction, making it preferable for
problems involving strong discontinuities such as material-
void problems. For C0-continuous problems, the continuity
in the solution is enforced through stabilized Lagrange
or Nitsche methods (Stenberg 1995). Intuitively, the dis-
continuous nature of the Heaviside enrichment function is
expected to affect the smoothness of shape sensitivities.
Heaviside-enriched XFEM for shape and topology opti-
mization has been used by Wei et al. (2010), Li et al. (2012),

Villanueva and Maute (2014), Lawry and Maute (2015),
Jeong et al. (2016) and Liu et al. (2016), among others.

None of the aforementioned studies provide an in-depth
discussion on the numerical behavior of the shape sen-
sitivities. Filling this gap in the literature is the primary
goal of this paper. We investigate in detail the advantages
and challenges that the Heaviside-enriched XFEM poses
to the computation of shape sensitivities via the adjoint
method, for both material-void and material-material prob-
lems. Analytical shape sensitivities are derived using both
continuum (differentiate, then discretize) and discrete (dis-
cretize, then differentiate) approaches. Numerical examples
on steady heat diffusion in 2D and steady incompress-
ible Navier-Stokes flow in 3D are presented for discussion
of the numerical behavior of shape sensitivities. Through
these examples we investigate the dependency of the shape
sensitivities on spatial resolution and interface conditions.
Furthermore we compare both numerically and analytically,
the XFEM-based shape sensitivities against shape sensitiv-
ities obtained by the classical Lagrangian approach using a
body-fitted mesh.

The remaining part of this manuscript is organized as
follows: Section 2 introduces a model problem alongside
the governing equations and their variational forms for
the heat diffusion and incompressible fluid flow studies;
Section 3 discusses the details of the adopted Heaviside-
enriched XFEM; Section 4 presents the shape sensitivities
using the adjoint approach in the context of variational cal-
culus; in Section 5, numerical examples are presented to
analyze and validate the proposed approach; finally, a sum-
mary and concluding remarks are presented in Section 6.
Appendix A presents a 1D analytical example to draw
comparisons between shape sensitivities obtained using
Heaviside-enriched XFEM and shape sensitivities obtained
using a body-fitted mesh.

2 Model problem

The current study is illustrated using the model problem
depicted in Fig. 2. Our model problem consists of one or
more stationary inclusions (material or void) embedded in
a matrix. The LSM is used to define the material geome-
try. This section describes the problem setup, the governing
equations for the model problem and their corresponding
variational form.

2.1 Domain description

The governing equations presented in Sections 2.2 and 2.3
are solved over the spatial domain Ω ⊂ R

d , for d topo-
logical dimensions. This spatial domain is composed of two
non-overlapping material subdomains (also referred to as
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material phases), Ω1 and Ω2, such that Ω = Ω1 ∪Ω2. The
external boundaries for the material domains Ω1 and Ω2 are
expressed as ∂Ω1 and ∂Ω2 respectively. The outward vec-
tor to these boundaries is denoted by n. The Dirichlet and
Neumann boundaries are denoted by ΓD = ∂Ωm ∩ ∂ΩD

and ΓN = ∂Ωm ∩ ∂ΩN respectively, where m = 1, 2. We
consider a sharp material interface, Γ ⊂ R

d−1, defined as
Γ12 = ∂Ω1 ∩ ∂Ω2. The outward normal along the material
interface Γ12, with respect to ∂Ω1, is denoted by nΓ .

The material interface geometry is defined using a set of
design variables, s. Within the context of the XFEM, the
material interface geometry can be defined in several man-
ners. In the seminal work on the XFEM by Moës et al.
(1999), cracks in 2D domains were parameterized explic-
itly using polygons. Recently, Haasemann et al. (2011) used
B-splines to improve the accuracy of interface approxi-
mation. The LSM, due to its ability to handle complex
shapes along with its ease of implementation, has been natu-
rally associated with the XFEM; see, for example, Sukumar
et al. (2001), Wang et al. (2003), Zabras et al. (2006), and
Fries and Belytschko (2010). Any of the aforementioned
approaches for defining the design geometry are applicable
to the current study and can be used to construct a set of
points, xΓ (s), that defines the material interface geometry,
Γ12.

We make use of the LSM to describe our model geome-
try. The material distribution in Fig. 2 can be interpreted in
terms of a level set field, φ(x, s), such that

φ(x, s) < 0 ∀ x ∈ Ω1
∣
∣
∣
s
,

φ(x, s) > 0 ∀ x ∈ Ω2
∣
∣
∣
s
,

φ(x, s) = 0 ∀ x ∈ Γ12|s . (1)

The level set field is mapped onto the XFEM mesh by
evaluating the parametrized level set field at the nodes.
Standard bilinear and trilinear shape functions, in 2D and
3D respectively, are used to interpolate the level set value
within an element. These shape functions permit that an
element edge can be intersected by the material interface,
i.e. φ(x, s) = 0, at most once. Lines and faces in 2D and

Fig. 2 Schematic of the model problem, with a single inclusion

3D respectively, connecting the edge intersection points,
xΓ (s) (= xΓ (φ(x, s))), define the material interface within
a finite element as shown in Fig. 3.

An example of defining the level set field as a function of
the design variable is given in (2) wherein the level set field
describes a sphere centered at xc

φ(x, s) = s − |x − xc| (2)

where | · | denotes the L2 norm, and the design variable, s,
assumes the role of the radius of the sphere. Thus, changes
in the design variable lead to changes in the shape of the
domain. For a detailed discussion on the LSM within the
context of shape and topology optimization, the reader may
refer to the comprehensive reviews by Dijk et al. (2013) and
Gain and Paulino (2013).

2.2 Steady heat diffusion

The model for the heat diffusion problem involves solv-
ing for the scalar temperature field, u(x), in Ω for material
phases m = 1, 2. The two-phase domain is governed by

− ∇.(κm∇um) = 0 in Ωm,

um = uD on ΓD,

(κm∇um) · n = qN on ΓN, (3)

where κ is the thermal conductivity tensor, and um is the
restriction of u to Ωm. The temperature, uD , is specified on
the Dirichlet boundary, ΓD , and a heat flux, qN , is specified
on the Neumann boundary, ΓN . The materials are assumed
to be isotropic, i.e. κm = kmI, with k1 and k2 being constant
over their respective material phases. Additionally, continu-
ity of the solution and flux across the material interface, Γ12,
must be ensured such that

u1 − u2 = 0 on Γ12,

k1∇u1 · nΓ − k2∇u2 · nΓ = 0 on Γ12. (4)

2.3 Incompressible Navier-Stokes flow model

We also consider a Newtonian fluid governed by the steady
incompressible Navier-Stokes equations for a single phase

Fig. 3 Construction of interface geometry for an intersected element
in 2D
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flow problem. The inclusion is void of any material. As a
result, fluid flow exists only in material phase 1 of our model
problem. The model problem involves solving for the vec-
tor velocity field, v(x), and pressure field, p(x), in Ω1. The
fluid flow is governed by

ρ1v1 · ∇v1 − ∇ · σ = 0 in Ω1,

∇ · v1 = 0 in Ω1, (5)

where σ
(

v1, p1
) = −p1I + 2μ1ε(v1) represents the

Cauchy-stress tensor. The density and dynamic viscosity
of the fluid are given by ρ1 and μ1 respectively, and are
assumed to be constant throughout Ω1. The rate of defor-

mation tensor is given by ε(v1) =
(

∇v1 + (∇v1
)T
)

/2. The

Dirichlet and Neumann boundary conditions are given by

v1 = vD on ΓD,

σ
(

v1, p1
)

· n = tN on ΓN. (6)

The velocity, vD , is specified on the Dirichlet boundary, ΓD ,
and the traction, tN , is specified on the Neumann boundary,
ΓN .

Assuming mass conservation across the material inter-
face, and no-slip conditions along the stationary material-
void interface, the velocity field at the interface is prescribed
to

v1 = 0 on Γ12. (7)

2.4 Variational form of the governing equations

The weak form of the governing equations is constructed by
multiplying the governing equations with a set of admissi-
ble test functions and integrating over the domain, Ω . We
adopt the standard Galerkin approach in defining the solu-
tion spaces U = U1 ×U2, U = U1 ×U2 and the weighting
spaces V = V1 × V2, V = V1 × V2, such that

Um =
{

um, pm ∈ H 1 (Ωm
) ; um = uD on ΓD

}

,

Vm =
{

νm, ηm ∈ H 1 (Ωm
) ; νm = 0 on ΓD

}

,

Um =
{

vm ∈ H 1 (Ωm
) ; vm = vD on ΓD

}

,

Vm =
{

ωm ∈ H 1 (Ωm
) ; ωm = 0 on ΓD

}

, (8)

where νm, ηm, and ωm are the temperature, pressure, and
velocity weighting functions respectively. The spaces U and
V are Hilbert spaces consisting of scalar functions with
square integrable first derivatives, whereas the spaces U and
V are Hilbert spaces consisting of vector functions with
square integrable first derivatives.

The weak form for the heat diffusion equations (3), aug-
mented with Nitsche’s method (Stenberg 1995; Juntunen

and Stenberg 2009) to satisfy the interface conditions (4), is:
Find um ∈ Um such that um = uD on ΓD and

RD = RD
Ω + RD

ΓN
+ RD

Γ12
= 0 ∀ νm in Vm, (9)

where RD
Ω is the residual of the volumetric contribution

from (3), RD
ΓN

is the residual contribution from the Neu-

mann boundary, and RD
Γ12

is the residual contribution from
the interface conditions presented in (4). These residual
contributions are given by

RD
Ω = (∇νm,

(

κ∇um
))

Ωm ,

RD
ΓN

= −〈νm, qN 〉ΓN
,

RD
Γ12

= −〈[[ν]], {k∇u} · nΓ 〉Γ12

−〈{k∇ν} · nΓ , [[u]]〉Γ12

+〈[[ν]], γu [[u]]〉Γ12 , (10)

where (a, b)X = ∫

X
a b dx denotes the L2 inner product on

X ⊂ R
d , and 〈a, b〉X = ∫

X
a b dx′ denotes the L2 inner

product on X ⊂ R
d−1. The jump and averaging operators

are defined as [[·]] = (·)2 − (·)1 and {·} = γ 1(·)1 + γ 2(·)2

respectively. The constants γu, γ 1, and γ 2 determine the
accuracy with which the interface conditions are satisfied.
Following the work by Annavarapu et al. (2012), we define
these constants as

γu = 2 cΓu

meas(Γ12)

meas(Ω1)/k1 + meas(Ω2)/k2
,

γ m = meas(Ωm)/km

meas(Ω1)/k1 + meas(Ω2)/k2
, (11)

where cΓu is a user-defined constant and determines how
strongly the interface constraints in (4) are enforced. A
high penalty on cΓu may ensure more accuracy but at the
cost of system stability. The operator meas(·) refers to the
magnitude of the respective quantity.

For the steady incompressible Navier-Stokes equa-
tions (5–6), we follow the approach of Schott and Wall
(2014) to satisfy the interface conditions (7). Thus, the weak
form is stated as: Find v1 ∈ U1, p1 ∈ U1 such that,
v1 = uD on ΓD and

RNS = RNS
Ω + RNS

ΓN
+ RNS

Γ12
= 0,

∀ ω1 ∈ V1, ∀ η1 ∈ V1. (12)

Here, RNS
Ω is the residual of the volumetric contribution

from (5), RNS
ΓN

is the residual contribution from the Neu-

mann boundary, and RNS
Γ12

is the residual contribution from
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the interface conditions presented in (6). These residual
contributions are given by

RNS
Ω =

(

ω1, ρ1v1 · ∇v1
)

Ω1

+
(

ε
(

ω1
)

, 2μ1ε
(

v1
))

Ω1
−
(

∇ · ω1, p1
)

Ω1

+
(

η1, ∇ · v1
)

Ω1
,

RNS
ΓN

= −〈ω1, tN 〉ΓN
,

RNS
Γ12

= −〈ω1, σ
(

v1, p1
)

· nΓ 〉Γ12

−〈σ
(

ω1, p1
)

· nΓ , v1〉Γ12

+γv〈ω1, v1〉Γ12 . (13)

The constant γv determines the accuracy with which the
interface condition is satisfied. Following the work by
Schott and Wall (2014), we define γv as

γv = cΓv

μ1

h
, (14)

where h is the element size, and cΓv is a user-defined con-
stant and determines how strongly the interface constraints
in (4) are enforced. A high penalty on cΓv may ensure more
accuracy but at the cost of system stability.

The convective term in (5) is known to cause node to
node oscillations in the velocity field. Furthermore, we
interpolate the velocity and pressure field using trilinear (in
3D) basis functions. This equal order interpolation gives rise
to instability in the pressure field. To increase the stability
of the system of equations, we augment (13) with SUPG
(streamline-upwind/Petrov-Galerkin) and PSPG (pressure
stabilizing/Petrov-Galerkin) terms introduced by Tezduyar
et al. (1992).

3 Heaviside-enriched XFEM

In order to accurately capture non-smooth solutions across
material interfaces, the traditional finite element method
requires a mesh that conforms to the design geometry. The
XFEM eliminates this requirement by augmenting the stan-
dard finite element interpolation by additional enrichment
functions to capture discontinuities in either the state vari-
ables or their spatial gradients within an element. Following
the work by Terada et al. (2003), Hansbo and Hansbo
(2004), and Makhija and Maute (2014), a generalized Heav-
iside enrichment strategy with multiple enrichment levels
is adopted to ensure that the solution field is interpolated
in a consistent manner, and to avoid any artificial cou-
pling due to disconnected material phases. This enrichment
strategy has been successfully applied to incompressible
Navier-Stokes problems by Kreissl and Maute (2012), to

heat diffusion by Lang et al. (2014), to linear elastic-
ity by Makhija and Maute (2014), Villanueva and Maute
(2014) and Lang et al. (2015), to fluid-structure interaction
problems by Jenkins and Maute (2015), and to convection
problems by Coffin and Maute (2016a, b).

For a two-phase problem, the approximation of solution
field, u(x), denoted as û(x), using the Heaviside-enriched
XFEM is given by

û (x) =
⎧

⎨

⎩

∑

e=1

(
∑

i∈I Ni (x)u1
i,eδ

1,i
el

)

if x ∈ Ω1

∑

e=1

(
∑

i∈I Ni (x)u2
i,eδ

2,i
el

)

if x ∈ Ω2,
(15)

where I is the set of all nodes within the finite element
mesh, Ni (x) is the nodal basis function associated with node
i, 
 is the maximum number of enrichment levels and um

i,e

is the degree of freedom at node i for phase m ∈ (1, 2). The
Kronecker delta δ

m,i
el selects the active enrichment level, l,

for node i and material phase m such that only one set of
degrees of freedom is used for interpolating the solution at
any given point, x in Ω , thereby satisfying the partition of
unity principle introduced by Babuška and Melenk (1997).

Figure 4 presents an intersection configuration compris-
ing of two finite elements in 1D. Linear nodal basis func-
tions, Ni , have been plotted over each element. Below each
node, the active set of degrees of freedom have been stated
corresponding to (15). Nodes 1 and 3 belong to material
phase 1 whereas node 2 belongs to material phase 2. Nodes
1 and 3 interpolate in each material phase using only one
degree of freedom per phase. Node 2 interpolates in material
phase 2 using one degree of freedom. However, for a con-
sistent interpolation in phase 1, node 2 requires two degrees
of freedom as the support of N2 includes two disconnected
regions of material phase 1. For a more comprehensive
understanding of the adopted enrichment strategy, the reader
is referred to the study by Makhija and Maute (2014).

The Heaviside-enriched XFEM requires integrating the
weak form of the governing equations separately in each
material phase. To this end, an element intersected by the
zero level set contour is subdivided as shown in Fig. 5. In
2D and 3D, this subdivision is typically carried out using
Delaunay triangulation. Integration over these subdivisions
require the identification of three distinct configurations.
Figure 5 presents the mapping between three different con-
figurations for an intersected element in 1D. An element in
the global coordinate system (Elemental Configuration) is
mapped to an element in its natural coordinate system (Nat-
ural Configuration) with coordinates ranging between ξ0

A =
−1 and ξ0

B = 1. The subdivided elements in the Natural
Configuration are further mapped to integration subdomains
(Integration Configuration) with coordinates for each sub-
domain ranging between ξ ′ = −1 and ξ ′ = 1. Using a linear
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Fig. 4 Interpolation of solution
field using generalized
Heaviside enrichment

Material 1

Material 2

interpolation scheme for approximation, the solution field,
û, is defined through the following 1D maps:

û (xk) = NA(ξ0
k )uA + NB(ξ0

k )uB, (16)

with

ξ0
k =

{
NA(ξ ′

i )ξ
0
A + NB(ξ ′

i )ξ
0
Γ x ∈ Ω1

NA(ξ ′
j )ξ

0
Γ + NB(ξ ′

j )ξ
0
B x ∈ Ω2.

(17)

The maps presented in (16) and (17) are revisited for
deriving shape sensitivities in Section 4.2.

The generalized Heaviside enrichment strategy allows
for each disconnected region of the same phase to be
approximated by an independent set of nodal degrees of
freedom. If the support of a nodal basis function is inter-
sected by the interface as in Fig. 4, by construction, the
solution (15) is discontinuous across the interface. Figure 6
presents an example of variation in the degrees of freedom
leading to a strong discontinuity in the solution field, û (x).
The presence of such a discontinuity presents the primary
motivation to investigate the behavior of shape sensitivities
within the context of Heaviside-enriched XFEM.

The generalized Heaviside enrichment strategy requires
that the material interface does not intersect a node. This
is achieved by shifting the material interface, xΓ , when the
interface comes within a critical distance of a node, referred
to as the critical shift distance, xΓc . The interface is shifted

such that the new interface position is at a distance, xΓc

from the node. The different options for shifting the mate-
rial interface include: i) Phase 1 Shift (P1S), such that upon
shifting xΓ , the previously intersected node lies in phase
1, ii) Phase 2 Shift (P2S), such that upon shifting xΓ , the
previously intersected node lies in phase 2, and iii) Phase
Maintaining Shift (PMS), wherein upon shifting xΓ , the
node retains its phase. In the scenario when xΓ lies exactly
on a node, we resort to P1S. Figure 7 presents a schematic
depicting the change in intersection configuration when per-
forming the various shifts. Effects of shifting the material
interface on the response function and its sensitivities are
further discussed in Section 5.1.2.

4 Shape sensitivities

Ways to calculate the shape sensitivities include finite dif-
ference, the direct, and the adjoint method. The finite
difference method is the most straightforward approach and
involves perturbing the shape parameter of interest and rean-
alyzing the response of the model for the perturbed values.
In the direct approach, sensitivities are computed by differ-
entiating the governing equations analytically using chain
rule and solving a linear system for every shape parame-
ter involved. In contrast, the adjoint method requires that
a linear system of equations be solved as many times as
the number of response functions. For CAD-free and topol-
ogy optimization problems, the number of design variables

Fig. 5 Mapping of integration
domains for an intersected
element Elemental Configuration

Natural Configuration

Integration Configuration
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(a)

(b)

Fig. 6 a Variation in degrees of freedom in an element intersected by
the material interface; b Solution field, û (x), approximated using (15)

typically far exceeds the number of response functions.
Therefore we adopt the adjoint method for computing shape
sensitivities. However, findings from the current study also
apply to the direct method.

In the current study the vector of design variables, s, is
a set of parameters that define the design geometry. For
instance, in Section 5.1.2 the radius of the circular inclu-
sion serves as the design variable. We begin by defining a
response function that takes the form

Z(u, s) =
∫

Ωm

G (u, s) dx

+
∫

∂Ωm

G′ (u, s) dx′, (18)

where u denotes the physical solution evaluated over the
complete spatial domain, Ω . The continuous function, G,

Original configuration Shifted configuration

P1S

P2S

PMS

Fig. 7 Interface shift schematic

is defined over the material subdomain Ωm. The continu-
ous function, G′ exists only on the material boundaries. In
the context of variational design sensitivity analysis, we fol-
low the work by Materna and Barthold (2008) to define
the response function using volume and surface reference
configurations defined over the domains Ω0 and ∂Ω0 with
coordinates 
 and 
′ respectively as shown in Fig. 8. The
response function in reference configuration is then given
by

Z(u, s) =
∫

Ω0

G (u, s)

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

∂Ω0

G′ (u, s)

∣
∣
∣
∣

∂x
∂
′

∣
∣
∣
∣
d
′. (19)

Here, |∂x/∂
| and
∣
∣∂x/∂
′∣∣ are the determinants of the

matrices constituting the maps Ω0 �→ Ωm and ∂Ω0 �→
∂Ωm respectively. Note that the design variables affect these
determinants which depend on the definition of the design
geometry. The design variables may also affect the material
properties, in which case G and G′ depend explicitly on s.
In a similar fashion to (19), the residual function, R, from
Section 2.4 can be expressed as

R(ν, u, s) =
∫

Ω0

F (ν, u, s)

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

∂Ω0

F ′ (ν, u, s)

∣
∣
∣
∣

∂x
∂
′

∣
∣
∣
∣
d
′, (20)

where F and F ′ are defined over Ωm and ∂Ωm respectively,
and assume the form of the residual contribution equations
presented in Section 2.4. The set of admissible test functions
is denoted by ν.

We augment (19) with (20) to introduce a Lagrangian
functional, L, such that

L(λ, u, s) = Z(u, s) + R(λ,u, s)

=
∫

Ω0

G(u, s)

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

∂Ω0

G′(u, s)

∣
∣
∣
∣

∂x
∂
′

∣
∣
∣
∣
d
′

+
∫

Ω0

F(λ, u, s)

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

∂Ω0

F ′(λ,u, s)

∣
∣
∣
∣

∂x
∂
′

∣
∣
∣
∣
d
′. (21)

Here λ is the vector of adjoint variables which assume
the role of test functions for the residual equations in
Section 2.4, i.e. ν = λ. We seek stationary points of L that
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Fig. 8 Mapping between
reference configurations and
physical space

 

 
 

 

 
 

 

 
 

 

 

 

 

   

 

A 3D reference configuration 

maps to a volume in 3D 

physical space. 

A 2D reference configuration 

maps to a surface in 3D 

physical space. 

 

  

 

satisfy equilibrium. Thus, taking the variation of (21) with
respect to λ and u yields:

δλ
∂L
∂λ

= 0 =⇒
∫

Ω0

δλ
∂F
∂λ

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

∂Ω0

δλ
∂F ′

∂λ

∣
∣
∣
∣

∂x
∂
′

∣
∣
∣
∣
d
′ = 0.

δu
∂L
∂u

= 0 =⇒
∫

Ω0

δu
∂G
∂u

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

∂Ω0

δu
∂G′

∂u

∣
∣
∣
∣

∂x
∂
′

∣
∣
∣
∣
d
′

+
∫

Ω0

δu
∂F
∂u

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

∂Ω0

δu
∂F ′

∂u

∣
∣
∣
∣

∂x
∂
′

∣
∣
∣
∣
d
′ = 0. (22)

The first equation in (22) is known as the primal prob-
lem, and vanishes if the governing equations are satisfied.
The second equation in (22) constitutes the adjoint prob-
lem. Thus, the vector of adjoint variables, λ, is the solution
satisfying the linear system of equations:

∫

Ω0

∂F
∂u

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d
 +

∫

∂Ω0

∂F ′

∂u

∣
∣
∣
∣

∂x
∂
′

∣
∣
∣
∣
d
′

= −
(∫

Ω0

∂G
∂u

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d
 +

∫

∂Ω0

∂G′

∂u

∣
∣
∣
∣

∂x
∂
′

∣
∣
∣
∣
d
′

)

. (23)

The complexity of solving the adjoint equation is equal
to solving a linear system of equations for each response
function. Using the solution obtained from (23), the shape

sensitivities with respect to the design variable, s, are then
computed by differentiating (21) with respect to s.

∂L
∂s

= ∂Z
∂s

+ ∂R
∂s

=
∫

Ω0

∂

∂s

(

G
∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣

)

d


+
∫

∂Ω0

∂

∂s

(

G′
∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣

)

d
′

+
∫

Ω0

∂

∂s

(

F
∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣

)

d


+
∫

∂Ω0

∂

∂s

(

F ′
∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣

)

d
′. (24)

Recall that the adjoint variable is absorbed in the definition
of R, and thus in the definitions of F and F ′. Based on (24),
the shape sensitivities depend on: i) variation of the response
function, Z , with respect to the design variables and ii) the
variation of the residual of the system of equations, R, with
respect to the design variables. The dependency of R on s
can be decomposed into explicit and implicit parts such that,

∂R
∂s

= ∂R
∂s

+ ∂R
∂xΓ

∂xΓ

∂s
. (25)

While it is straightforward to determine the explicit depen-
dency of the response function on the design variable, it is
less obvious how the residual behaves with respect to the
design variable within the context of the Heaviside-enriched
XFEM. In the ensuing discussion, we present and investi-
gate two contrasting approaches to computing the residual
derivative. For simplicity throughout the derivation we will
consider only one design variable, thus reducing the vector
of design variables to a scalar, s.

4.1 A continuum approach to evaluating the residual
derivative, ∂R/∂s

This approach to computing the shape sensitivities involves
differentiating the residual of the system of equations, R,
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with respect to the design variable, s, followed by the
discretization of the resulting expressions. Using a refer-
ence configuration as in Fig. 8, we derive separately, the
residual derivative for volumetric and surface functions.
Expressions derived in this section are well known within
the shape optimization community, and are presented here
for completeness. Interested readers are referred to works
by Sokolowski and Zolésio (1992), Delfour and Zolésio
(2011), and Walker (2015) for further details.

4.1.1 Contribution to residual functions defined in Ωm

Without any loss in generality, the volume contribution of
the residual function, RΩ takes the form

RΩ =
∫

Ω0

F (x(
, s), s)

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d
, (26)

where F represents of any of the integrands in (10) or (13),
defined in Ωm. The derivative of the residual function with
respect to the design variable is then given by

∂RΩ

∂s
=
∫

Ω0

(
∂F
∂s

+ ∇F · ∂x
∂s

) ∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

Ω0

F ∂

∂s

(∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣

)

d
. (27)

Note that the only points in space that are design depen-
dent lie along the material boundary. As a result, ∂x/∂s = 0
everywhere except along the material boundary. The third
term in (27) is evaluated using Jacobi’s formula for the
derivative of a determinant to give

∂RΩ

∂s
=
∫

Ω0

(
∂F
∂s

+ ∇F · V
) ∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

Ω0

F∇ · V
∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


=
∫

Ω0

(
∂F
∂s

+ ∇ · (FV)

) ∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d
. (28)

where V = ∂x/∂s denotes the boundary velocity vector
which may or may not be of constant magnitude along the
boundary. Applying the divergence theorem for a vector
field to the second term in (28), and mapping the terms
from reference configuration back to the physical space, the
residual derivative takes the form,

∂RΩ

∂s
=
∫

Ω0

∂F
∂s

∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d


+
∫

∂Ω0

FV · ñ
∣
∣
∣
∣

∂x
∂


∣
∣
∣
∣
d
′

=
∫

Ωm

∂F
∂s

dx +
∫

∂Ωm

FV · ñ dx′. (29)

Here, ñ is the outward unit normal vector depicted in
Fig. 8. The second expression in (29) is commonly referred
to as Hadamard’s structure theorem (Delfour and Zolésio
1992) which states that shape sensitivities, for functions
defined in Ωm, depend only on the normal component of
the deformations at the material boundary, ∂Ωm.

Unless the governing equations depend explicitly on the
design variables, the first term in (29) vanishes. As a result,
often only the second term needs to be computed. This how-
ever is not the case if using a C0-continuous enrichment
wherein the enrichment function itself depends explicitly
on the design variables. While integrating over the mate-
rial boundary, ∂Ωm, only the velocity vector, V, is design
dependent. As a result in a discretized setting, the second
term in (29) vanishes for elements not intersected by the
material interface.

4.1.2 Contribution to residual functions defined on ∂Ωm

For boundary terms in the governing equations, includ-
ing those defined over the material interface, the residual
function RΓ takes the form

RΓ =
∫

∂Ω0

F ′ (x(
′, s), s
) ‖C1 × C2‖d
′ ;

C1 = ∂x
∂
′

1
; C2 = ∂x

∂
′
2
, (30)

where F ′ represents any of the integrands in (10) or (13),
defined over ∂Ωm including Γ12. The tangent vectors are
denoted by C1 and C2, as depicted in Fig. 8. Following the
chain rule in (27), the derivative of RΓ with respect to the
design variable takes the form

∂RΓ

∂s
=
∫

∂Ω0

∂F ′

∂s
‖C1 × C2‖d
′

+
∫

∂Ω0

V · ∇Γ F ′ ‖C1 × C2‖ d
′

+
∫

∂Ω0

F ′ ∂ ‖C1 × C2‖
∂s

d
′, (31)

where ∇Γ is the surface divergent operator. Using the iden-
tities for surface mapping as presented, for example, by
Walker (2015), (31) is mapped back to the physical space to
give

∂RΓ

∂s
=
∫

∂Ωm

∂F ′

∂s
dx′ +

∫

∂Ωm

V · ∇Γ F ′dx′

+
∫

∂Ωm

F ′ ∇Γ · Vdx′

=
∫

∂Ωm

(
∂F ′

∂s
+ ∇Γ · (F ′V

)
)

dx′. (32)
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Applying integration by parts to ∇Γ · (), (32) is expanded
into a normal and tangential component such that

∂RΓ

∂s
=
∫

∂Ωm

(
∂F ′

∂s
+ F ′K (V · ñ)

)

dx′

+
∫

∂(∂Ωm)

F ′ (̃τ × ñ) · Vdx′′. (33)

Here, K = −(∇Γ · ñ)/2 is the mean curvature of the
surface ∂Ωm, ∂ (∂Ωm) is the boundary to the surface ∂Ωm

as highlighted in Fig. 8, and τ̃ is a unit tangent vector on
∂ (∂Ωm) such that τ̃ × ñ points out of ∂Ωm. The second and
third term in (33) quantify the normal and tangential compo-
nents respectively, of the shape change for functions defined
on the boundary. Note that the tangential component van-
ishes if Ωm represents a closed domain. The curvature, K, in
the context of implicit curves and surfaces can be computed
as described by Goldman (2005).

As is evident from (33), the sensitivities for functions
defined on ∂Ωm assume a more involved form resulting
from quantifying the change in the map, ∂Ω �→ 
′, with
respect to the design variable. Unlike the case for func-
tions defined in Ωm, the derivative ∂F ′/∂s does not vanish
in most scenarios. For instance, the weighting parameters
in (11) depend on the position and size of the material
interface.

4.2 A discrete approach to evaluating the residual
derivative, ∂R/∂s

In contrast to the continuum approach, this approach
involves discretization of the residual of the system of equa-
tions, followed by differentiation with respect to the design
variable, s. We decompose (25) on an elemental level to
obtain the discretized residual derivatives such that

∂R̂
∂s

=
∑

e∈Ne

∂R̂e

∂s
+
∑

e∈Ne

NΓ∑

k=1

∂R̂e

∂xk
Γ

Vk, (34)

where Ne is the set of all elements that constitute the
finite element mesh, and N� is the number of interfaces
present within the element e. Note that ∂R̂e/∂xk

Γ vanishes
for elements not intersected by the material interface. As
in the previous section, we proceed by deriving the resid-
ual derivatives for functions defined over Ωm followed by
residual derivatives for functions defined over ∂Ωm. We
illustrate the derivation using the 1D configuration shown in
Fig. 5.

4.2.1 Contribution to residual functions defined on Ωm

To maintain coherence of the derivation, we consider only
the phase 1 residual contribution of the intersected element
in Fig. 5. Assuming a function F , that may take the form of

any of the terms evaluated over Ωm in (10) or (13), the ele-
mental residual contribution from phase 1 is then expressed
as

ReΩ =
∫ xΓ

xA

F (x, s) dx

=
∫ 1

−1
F
(

ξ0 (ξ ′) , s
) | xΓ − xA |

2
dξ ′, (35)

The above equation is evaluated at specific integration
points to arrive at the discretized form of the residual
function given by

R̂eΩ =
Nip
∑

i=1

wi F̂
(

ξ0 (ξ ′) , s
)∣
∣
∣
ξ ′
i

| xΓ − xA |
2

, (36)

where Nip is the number of integration points with associ-
ated weights, wi . The finite element approximation of F ,
based on (15), is given by F̂ . The material interface, xΓ is
approximated based on (16) such that

xΓ = NA(ξ0
Γ )xA + NB(ξ0

Γ )xB. (37)

We now proceed to derive the derivatives of the dis-
cretized residual function in (36) with respect to the design
variable, s. Based on (34), we express the residual derivative
contribution at an elemental level as

∂R̂eΩ

∂s
+ ∂R̂eΩ

∂xΓ

V =
Nip
∑

i=1

wi

∂F̂
∂s

∣
∣
∣
∣
∣
ξ ′
i

| xΓ − xA |
2

+
Nip
∑

i=1

wi

∂

∂xΓ

(

F̂
∣
∣
∣
ξ ′
i

| xΓ − xA |
2

)

V. (38)

The first term in (38) is analogous to the first term in (27)
and accounts for the explicit dependency of the governing
equations on the design variable. The second term accounts
for the change in the elemental residual with respect to the
material interface position due to change in design. Making
use of (17) and (37), we expand further, the derivative of
the residual with respect to the interface position as shown
below.

∂R̂eΩ

∂xΓ

=
Nip
∑

i=1

wi

∂F̂
∂xΓ

∣
∣
∣
∣
∣
ξ ′
i

|xΓ − xA|
2

+
Nip
∑

i=1

wiF̂ |ξ ′
i

1

2

=
Nip
∑

i=1

wi

∂F̂
∂ξ0

Γ

∣
∣
∣
∣
∣
ξ ′
i

∂ξ0
Γ

∂xΓ

∣
∣
∣
∣
∣
ξ ′
i

|xΓ − xA|
2

+
Nip
∑

i=1

wiF̂ |ξ ′
i

1

2
(39)
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where,

∂F̂
∂ξ0

Γ

∣
∣
∣
∣
∣
ξ ′
i

= ∂F̂
∂ξ0

∣
∣
∣
∣
∣
ξ ′
i

∂ξ0

∂ξ0
Γ

∣
∣
∣
∣
∣
ξ ′
i

= ∂F̂
∂ξ0

∣
∣
∣
∣
∣
ξ ′
i

NB

(

ξ ′
i

)

∂ξ0
Γ

∂xΓ

= ∂ξ0

∂x

∣
∣
∣
∣
Γ12

=
(

∂NA

∂ξ0
xA + ∂NB

∂ξ0
xB

)−1

. (40)

Here, ξ0
Γ is the material interface position in the Natu-

ral Configuration as shown in Fig. 5. The first and second
terms in (39) are analogous to the second and third terms
in (27) respectively. The derivative of the determinant of
the mapping term, | xΓ − xA |/2, with respect to s is overly
simplified in 1D. In higher dimensions, the complexity of
determining and implementing the derivatives of the deter-
minant of the mapping term increases as is seen in the study
by Noël et al. (2016). The term ∂ξ0

Γ /∂xΓ quantifies the
change in the interface position in the Natural Configura-
tion (see Fig. 5) with respect to the interface position in
the Elemental Configuration. This indicates that the defini-
tion of the Integration Configuration is always relative to
the position of the material interface. Note that ∂ξ0

Γ /∂xΓ =
∂ξ0/∂x

∣
∣
Γ12

is the inverse of the Jacobian mapping (Cook
1994) evaluated at the material interface, and is readily
available during finite element computations. For a compar-
ison against shape sensitivity analysis using a body-fitted
mesh, the reader is referred to Appendix A.

Using the integration limits, xΓ and xB , the elemental
residual derivative for phase 2 can be derived in the exact
manner as described above. Using an appropriate set of

maps,
(

ξ ′)d �→ (

ξ0
)d �→ (x)d , and integration subdomains

(for instance, triangular subdomains for quad elements in
2D and tetrahedral subdomains for hexahedron elements
in 3D), the proposed approach can be readily extended to
d > 1 dimensions in space.

4.2.2 Contribution to residual functions defined on ∂Ωm

Assuming a function F ′, that may take the form of any of
the terms evaluated over ∂Ωm in (10) or (13) including Γ12,
the residual function in 1D takes the form

ReΓ =
∫

xΓ

F ′ (x, s) dx′

=
∫

ξ0
Γ

F ′ (ξ0 (ξ ′) , s
)

dξ ′. (41)

Note that the material boundary in 1D collapses to a
point. As a result, for functions defined on the material
boundary, the residual derivative takes the form

∂R̂eΓ

∂s
+ ∂R̂eΓ

∂xΓ

∂xΓ

∂s
= ∂F̂ ′

∂s

∣
∣
∣
∣
∣
ξ ′
i

+ ∂F̂ ′

∂xΓ

∣
∣
∣
∣
∣
ξ ′
i

∂xΓ

∂s
. (42)

The second term in (42) is evaluated in a manner similar
to that described in (39)–(40).

4.3 Choice of approach for evaluating ∂R/∂s

The choice of approach for computing ∂R/∂s depends
largely on the system of equations that needs to be solved
as well as the generality and ease of implementation. The
discretized approach, in higher dimensions, results in an
involved derivation of the shape sensitivities due to the
complexity of mapping between domains (17). The deriva-
tive of the mapping term with respect to design variables
increases in complexity with the order of interpolation.
The continuum approach on the other hand presents a
more attractive option wherein the shape sensitivities for
the volumetric terms can be computed conveniently using
the second term in (29). However, for governing equa-
tions dependent on the design variables, the first term in
(29) does not vanish. For terms defined at the interface,
a map between an R

d global domain and an R
d−1 refer-

ence domain is required as shown in Fig. 8. Accounting
analytically for the change in this mapping with respect to
design variables requires the computation of the curvature as
demonstrated in (33). Computation of the curvature requires
second order spatial derivatives (see Goldman 2005) which
do not exist for lower order elements. Moreover, the depen-
dency of certain interfacial terms, such as (11), on the
interface position needs to be accounted for in the form of
∂F ′/∂s.

As the preferred option in the current study we adopt a
semi-analytical approach wherein great ease of implemen-
tation is achieved by finite differencing the term ∂R̂e/∂xk

Γ

in (34), with a design perturbation size, �FD:

∂R̂
∂s

=
∑

e∈Ne

NΓ∑

k=1

NxΓ∑

i=1

⎛

⎜
⎜
⎜
⎝

R̂e

∣
∣
∣
x
Γ k
i

+�FD

2�FD

−
R̂e

∣
∣
∣
x
Γ k
i

−�FD

2�FD

⎞

⎟
⎟
⎟
⎠
VxΓi

.

(43)

Alternatively, a hybrid scheme may be adopted wherein
the continuum approach may be used for volumetric terms
while the material boundary terms are subjected to finite
differencing to give,

∂R
∂s

=
∫

Ωm

∂F
∂s

dx +
∫

∂Ωm

FV · ñ dx′

+
∑

e∈Ne

NΓ∑

k=1

NxΓ∑

i=1

⎛

⎜
⎜
⎝

R̂eΓ

∣
∣
∣
x
Γ k
i

+�FD

2�FD

−
R̂eΓ

∣
∣
∣
x
Γ k
i

−�FD

2�FD

⎞

⎟
⎟
⎠
VxΓi

.

(44)
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The finite differencing in (43) and (44) is carried out
by perturbing the individual edge intersection points, xΓi

,
belonging to every intersected finite element, as shown in
Fig. 9. Such a perturbation helps account for the arc length
change, thus capturing the curvature related term in (33). In
contrast, a global finite difference is achieved by perturbing
the entire interface geometry via the design variable such
that,

∂Z
∂s

=
∫

Ωm G|s+�FD
− ∫

Ωm G|s−�FD

2�FD

dx

+
∫

∂Ωm G′∣∣
s+�FD

− ∫

∂Ωm G′∣∣
s−�FD

2�FD

dx′. (45)

Since we use the LSM to describe our interface geometry,
we note an implication of computing the design velocity,
V = ∂xΓ /∂s using the level set field. Referring to Fig. 5,
the interface position can be expressed in terms of the level
set field such that,

xΓ = xA − xB − xA

φB − φA

φA. (46)

The design velocity is then given by,

∂xΓ

∂s
δs = xB − xA

(φB − φA)2

(

φA

∂φB

∂s
δs − φB

∂φA

∂s
δs

)

. (47)

To keep the design velocity from vanishing or becoming
extremely large, it is important to maintain the gradient of
the level set field at |∇φ| ≈ 1 i.e.,

∣
∣
∣
∣

xB − xA

φB − φA

∣
∣
∣
∣
= |∇φ| ≈ 1. (48)

5 Numerical examples

In this section, we present four numerical examples to
discuss the behavior, such as smoothness and accuracy,

Fig. 9 Perturbing intersection points for finite differencing in (43) and
(44)

of shape sensitivities within the framework of Heaviside-
enriched XFEM. Examples 1 through 3 consider steady
heat diffusion in 2D. The fourth example studies an incom-
pressible fluid flow and showcases the applicability of the
proposed framework to nonlinear systems in 3D. Through
these examples we study the smoothness and accuracy of
the XFEM-based shape sensitivities and its dependency
on factors such as the choice of approach for evaluat-
ing ∂R/∂s, interface conditions, and discretization of the
interface geometry.

The 2D design domains are discretized in space using
bilinear quadrilateral elements, and the 3D design domains
are discretized using trilinear hexahedral elements. Unless
mentioned otherwise, in all steady heat diffusion exam-
ples, an interface constraint penalty of cΓu = 1.0 was
used in (11). For the incompressible fluid flow example,
we set the interface constraint penalty to cΓv = 1000 in
(14). To mitigate issues with ill-conditioning caused by an
extremely small (or large) ratio of intersected areas within
an intersected element, we use the geometric precondition-
ing scheme of Lang et al. (2014). The nonlinear problem of
Section 5.4 is solved using Newton’s method. The linearized
system of equations for all examples, of both the forward
and the sensitivity analysis, are solved using a direct solver.

5.1 Example 1

We consider the two-phase problem setup shown in Fig. 10.
A strip inclusion of conductivity k2 = 10, is inclined at
an angle θ to the vertical axis. This inclusion is embedded
into a rectangular matrix of conductivity k1 = 1. The center
location of the strip is maintained constant at x = (15, 6).
A Neumann boundary condition of qN = 1 is applied along
the left edge. A Dirichlet boundary condition of uD = 1
is applied to the right edge. The top and bottom edges are
adiabatic. The design variable, s, is half of the width of the
strip inclusion, measured parallel to the horizontal axis.

The study of the current example is divided into three
subsections. The first subsection establishes the accuracy
of the proposed semi-analytical approach. Comparisons are
made against i) finite differenced shape sensitivities, i.e.
finite differencing ∂Z/∂s (45), ii) shape sensitivities com-
puted using the hybrid approach of (44), and iii) shape
sensitivities computed using a body-fitted mesh. The second
subsection discusses the influence of shifting the interface

Fig. 10 Heat diffusion problem setup with strip inclusion
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(Fig. 7) on the semi-analytically computed shape sensi-
tivities. In the third subsection, we study the behavior of
shape sensitivities when the response function is evaluated
at a region that changes material phases over the course of
design change.

5.1.1 Accuracy comparison of shape sensitivities

As described in Section 4.3, we adopt a semi-analytical
approach to computing the shape sensitivities. In order to
establish the accuracy of the proposed approach, we first
use the problem setup of Fig. 10 with θ = 0◦ to draw
comparisons against finite differenced shape sensitivities
as well as shape sensitivities computed using the hybrid
approach of (44). The problem domain is discretized using
a mesh size of h = 1.0. Shape sensitivities are recorded for
every configuration as the design variable is varied between
s = 1.5 and s = 2.5, in constant increments of �s = 0.02.
The response function, Z , is the temperature measured at
the node A located at x = (0, 0). Figure 11 plots the
response function, Z , and the corresponding shape sensi-
tivities, ∂Z/∂s, as a function of the design variable for the
approaches mentioned above.

Choosing θ = 0◦ results in a vertical strip inclusion.
Thus, the current problem setup is a 2D approximation of a
1D model with the analytical solution given by

uA = uD +
(

30 − 2s

k1
+ 2s

k2

)
qN

6
,

∂uA

∂s
= −0.3 (49)

The analytical solution in (49) shows a linear dependency
of Z on the width of the vertical strip inclusion. As a result
the corresponding shape sensitivities are constant as com-
puted in (49). The shape sensitivities obtained using the
different approaches are presented in Fig. 11. The rela-
tive difference in sensitivities between the three approaches
was insignificant (approximately 10−8) except at s = 2.0
which resulted in an intersection configuration wherein the

material interface coincides with finite element mesh nodes.
Here, the finite differenced sensitivities vanish. This behav-
ior is a result of the material interface shift depicted in Fig. 7
and is further discussed in the next subsection. A pertur-
bation size of �FD = 10−6h/2 was chosen. For various
values of �FD between 10−3h and 10−10h, the relative
difference (with respect to �FD = 10−6h/2) in the XFEM-
based shape sensitivities was measured to be approximately
10−5. The choice of �FD for the XFEM-based sensitivities
is related to the material interface shift and is discussed in
the next subsection.

Having established the accuracy of the shape sensi-
tivities using the proposed semi-analytical approach, we
now compare the smoothness of XFEM-based sensitivi-
ties against shape sensitivities obtained using a body-fitted
mesh. The body-fitted FEM sensitivities are computed
via finite differencing. To better comprehend the differ-
ence in smoothness of shape sensitivities, the strip is
inclined at θ = 30◦, for which the sensitivities are no
longer expected to be constant. Two different body-fitted
approaches were adopted: i) FEM-1, wherein all nodes
move with the boundary using a design element concept
(Bletzinger et al. 1991); ii) FEM-2, wherein only the nodes
on the boundaries are moved during the finite difference
perturbations. Body-fitted finite element meshes of 120 by
24 elements were used. A perturbation size of �FD =
10−6/2 was used for computing the body-fitted shape sensi-
tivities. Numerical experiments showed that the body-fitted
FEM results were converged for this mesh and perturbation
size.

Figure 12 presents the response function and the shape
sensitivities as a function of the design variable. Even
though the response function plots match closely, the
shape sensitivities using the XFEM are not as smooth as
those obtained using the body-fitted mesh. Mesh refine-
ment leads to convergence of the sensitivities computed
using the XFEM. It was also noticed that the interface
constraint penalty (11) influences the accuracy of the sen-
sitivities, relative to FEM-1. Table 1 presents the difference
in shape sensitivities using the XFEM with respect to shape

Fig. 11 Accuracy of
semi-analytical shape
sensitivities: response function
(left) and corresponding shape
sensitivities (right)
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Fig. 12 Comparison with body-fitted mesh, θ = 30◦: Response function (left) and corresponding shape sensitivities (right)

sensitivities evaluated using FEM-1. This relative differ-
ence is averaged over all designs considered. Also presented
in Table 1 is the interface constraint error averaged over
the number of different designs. Note that a higher inter-
face constraint penalty does not guarantee a low relative
difference in shape sensitivities.

Based on the above results, although less smooth than
the body-fitted FEM-based approaches, the semi-analytical
approach captures accurately the overall behavior of shape
sensitivities. Spatial refinement can be used to further
improve the smoothness of shape sensitivities computed
using the semi-analytical approach. Section 5.2 provides a
more comprehensive analysis of this issue.

Table 1 Influence of interface constraint penalty

h cΓ u Difference Interface

relative to constraint error

FEM-1

0.25 1.0 0.68 % 1.46 · 10−3

0.25 10.0 0.39 % 2.54 · 10−4

0.25 100.0 0.63 % 9.19 · 10−5

0.125 1.0 0.32 % 6.03 · 10−4

0.05 1.0 0.22 % 1.84 · 10−4

5.1.2 Influence of interface shift on semi-analytical shape
sensitivities

In this subsection, we discuss the influence of the mate-
rial interface shift on the computation of the semi-analytical
shape sensitivities. As depicted in Fig. 7, the material
interface is prevented from intersecting a node by shift-
ing the interface as it comes within a critical distance of
a node, referred to as the critical shift distance set here at
xΓc = 10−6h. For all numerical results presented in this
study, unless mentioned otherwise, the P1S approach is used
alongside a finite difference perturbation size of �FD =
10−6h/2. Using a mesh of size h = 1, and setting θ = 0◦,
the design variable is varied in increments of �s = 0.15xΓc .
The response function, Z , is the temperature measured at
node A. Such a setup, with �s < xΓc , allows us to study
the behavior of shape sensitivities within the critical shift
distance as the material interface crosses a node.

Figure 13 plots the response function for each of the shift
options listed in Section 3. Note that the interface intersects
a node at s = 2. Based on Fig. 7, the interface shift is per-
formed such that the new position of the material interface is
assumed at a distance xΓc from the node in concern. This, as
expected, results in a distinct discontinuity in the response
function within the critical shift distance.

Figure 14 presents a comparison of XFEM-based shape
sensitivities computed using the proposed semi-analytical
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Fig. 13 Influence of shifting
the interface on the response
function: P1S (left), P2S
(middle), PMS (right)
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approach against shape sensitivities computed using central,
forward, and backward finite differencing. Results are pre-
sented for perturbation sizes of �FD = 2xΓc and �FD =
xΓc/2 using the P1S approach. While finite differencing
∂R̂e/∂ x̂

k
Γ , design perturbations may result in the mate-

rial interface crossing over to a neighboring element. In
such a scenario and to avoid an intersection point passing
through a node, a forward or backward finite differencing of
∂R̂e/∂ x̂

k
Γ is performed depending on the interface configu-

ration. A finite difference perturbation size of �FD < xΓc

allows for central finite differencing at all times regardless
of the interface position. Note that this issue does not affect
the finite differencing approach, and strictly pertains to the
computation of ∂R̂e/∂ x̂

k
Γ during semi-analytical sensitivity

computations.
As established in Section 5.1.1, shape sensitivities are

expected to remain constant with the varying thickness of
a vertical strip inclusion. Figure 14 shows that accurate
sensitivities are obtained via the semi-analytical approach
regardless of the perturbation size, �FD . When computing
shape sensitivities via the semi-analytical approach, design
perturbations (for finite differencing ∂R̂e/∂ x̂

k
Γ ) are per-

formed about the interface configuration used to compute
the response, as shown in Fig. 9. No interface shift is per-
formed during any of these design perturbations. In contrast,
inaccurate sensitivities are obtained via finite differencing.

This is because finite differencing ∂Z/∂s at a global level
provides no control over the elemental interface shift, i.e.
G′∣∣

s+�FD
, G′∣∣

s−�FD
, G|s+�FD

and G|s−�FD
in (45) are

evaluated based on design configurations subjected to the
material interface shift.

Figure 15 presents the scenario wherein the material
interface is shifted during the design perturbations for the
semi-analytical sensitivity computations. Results are pre-
sented corresponding to each of the three shift options. A
perturbation size of �FD = 2xΓc is used. Alongside the
central, forward, and backward finite difference approaches,
inaccurate sensitivities are also obtained through the semi-
analytical approach as expected. Giving up control over the
elemental interface shift results in semi-analytical sensitiv-
ities coinciding with at least one of the finite difference
approaches depending on the interface configuration as
discussed above.

5.1.3 D iscontinuity in shape sensitivities

In this subsection we present shape sensitivities correspond-
ing to a response function evaluated at a node that changes
material phase. We use the problem setup of Fig. 10 with
θ = 30◦. Shape sensitivities are recorded for every configu-
ration as the design variable is varied between s = 1.5 and
s = 2.5, in constant increments of �s = 0.02. The response

Fig. 14 Accuracy of
semi-analytical sensitivities,
P1S: �FD = 2xΓc (left) and
�FD = xΓc /2 (right)
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Fig. 15 Influence of shifting the interface during computation of shape sensitivities, �FD = 2xΓc : P1S (left), P2S (middle), PMS (right)

function, Z , is the temperature measured at node B located
at x = (14.5, 3). Figure 16 presents the response function
and the corresponding shape sensitivities as a function of
the design variable. There is a kink in the variation of the
response function leading to a strong discontinuity in the
shape sensitivities. This discontinuity is not a byproduct of
the XFEM framework, but corresponds to the material phase
change that node B experiences as the material interface
moves across the node.

Such discontinuities in shape sensitivities are often
encountered in shape and topology optimization problems
when certain nodes change material phase. This can cause
issues when using gradient based optimization algorithms
for solving optimization problems that measure the response
function over small regions of the design domain.

5.2 Example 2

The goal of this example is to investigate the dependency
of the shape sensitivities on the discretization of the design
geometry, i.e. mesh refinement. We consider the two-phase
problem setup shown in Fig. 17. A circular inclusion of con-
ductivity k2 = 10, is embedded into a rectangular matrix

of conductivity k1 = 1. The circular inclusion is cen-
tered at x = (15, 3). A Neumann boundary condition of
qN = 1 is applied to the left edge. A Dirichlet bound-
ary condition of uD = 1 is applied to the right edge. The
top and bottom edges are adiabatic. The design variable,
s, is the radius of the circular inclusion. Shape sensitiv-
ities are recorded for every configuration as the design
variable is varied between s = 1.5 and s = 2.5, in
constant increments of �s = 0.02. The response func-
tion, Z , is the temperature measured at node A located
at x = (0, 0). In this example, we also focus on the
sensitivities for the perimeter (per) of the inclusion. The
circular inclusion has a perimeter of 2πs. Consequently,
the analytical solution for the sensitivity of the perimeter
is 2π .

The response function and the corresponding shape sen-
sitivities for a mesh size of h = 0.25 are plotted in
Fig. 18. A visibly smooth response function is obtained.
However, the shape sensitivities obtained are not smooth.
Plotted alongside the sensitivities for the response function,
are the sensitivities for the perimeter of the circular inclu-
sion. A correlation is observed in the behavior of the two
plots, implying a significant influence of the discretization

Fig. 16 Response function (left)
and shape sensitivities (right) for
temperature measured at node B

2.8

2.85

2.9

2.95

3

3.05

3.1

1.5 2 2.5 1.5 2 2.5
-0.3

-0.25

-0.2

-0.15

h = 0.25 h = 0.05

143



www.manaraa.com

402 A. Sharma et al.

Fig. 17 Heat diffusion problem setup with circular inclusion

Fig. 18 Response function (left)
and shape sensitivities (right)
for circular inclusion, h = 0.25
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Fig. 19 Dependence of shape sensitivities on geometry discretization: Response function (left), and sensitivities corresponding to response
function (middle) and perimeter (right)

Fig. 20 Heat diffusion problem setup with two circular inclusions

5

5.1

5.2

5.3

h = 0.25 h = 0.05

-0.5

0

0.5

-50

0

50

2 4 6 2 4 6 2 4 6
-0.5

0

0.5

1

-20

0

20

40

Fig. 21 Shape sensitivity analysis for merging inclusions: Response function comparison (left), and sensitivities for h = 0.25 (middle) and
h = 0.05 (right)
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Fig. 22 Response function (left) and corresponding shape sensitivities (right) in the region where the inclusions merge for KS aggregation
parameter of 10

of the design geometry on the computation of the shape
sensitivities. Consequently, a comparison with a finer mesh
is drawn in Fig. 19. With mesh refinement, the sensitivities
for the inclusion interface perimeter approach the constant
value of 2π indicating a more accurate approximation of
the interface geometry. The improved approximation of the
interface geometry leads to a smoother behavior of the shape
sensitivities.

Since the smoothness of shape sensitivities depends
greatly on the discretization of the geometry, the levels of
mesh refinement required to obtain smoother shape sensi-
tivities is geometry dependent. As a result, finer meshes
are required to better approximate the geometries of smaller
feature sizes. Alternatively, the order of the geometry
description can be increased. Instead of using polygons in
2D and facets in 3D to approximate the material interface
within an element as done in this study (see Section 2.1),
higher-order approximations could be used. It is important
to note that the smoothness of the shape sensitivities is
not entirely dependent on the discretization of the geome-
try. This is observed from the sensitivity plots in Fig. 12
where the design geometry consists of only straight lines.
The fluctuations observed there are attributed to the change
in triangulation patterns as the interface moves through
the background mesh. Recall from Section 3, the integra-
tion subdomains in the current study are constructed via
Delaunay triangulation.

5.3 Example 3

This example investigates the evolution of the response
function and the corresponding shape sensitivities for a sce-
nario which simulates the merging of shapes in topology
optimization. We consider the two-inclusion problem setup
shown in Fig. 20. Two circular inclusions of conductivity
k2 = 10, are embedded into a rectangular matrix of conduc-
tivity k1 = 1. The circular inclusions have a radius of 2. The
left and right inclusions are initially centered at x = (12, 3)

and x = (18, 3) respectively, with the mean of the centers
fixed at x = (15, 3). The design variable, s, is the distance
between the centers of the two circular inclusions. A Neu-
mann boundary condition of qN = 1 is applied to the left
edge. A Dirichlet boundary condition of uD = 1 is applied
to the right edge. The top and bottom edges are adiabatic.
Shape sensitivities are recorded for every configuration as
the design variable is varied between s = 6 and s = 2, in
constant increments of �s = −0.025. The response func-
tion, Z , is the temperature measured at the node A, located
at x = (0, 0). Note, due to the intersection configurations
encountered during the merging of inclusions, this example
makes use of multiple enrichment levels.

To maintain differentiability of the response function
with respect to the design variable, the two circles are incor-
porated into the design geometry using a Kreisselmeier-
Steinhauser (KS) function (Kreisselmeier and Steinhauser
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Fig. 23 Response function (left) and corresponding shape sensitivities (right) in the region where the inclusions merge for KS aggregation
parameter of 200

1979) instead of a min/max function. The KS aggregation
parameter was set to 10. The response function and the cor-
responding shape sensitivities for mesh sizes of h = 0.25
and h = 0.05 are plotted in Fig. 21. Because �FD < xΓc ,
the inclusions do not merge when perturbing the designs
for computing ∂R̂e/∂ x̂

k
Γ by finite differencing. Therefore,

from the perspective of shape sensitivity analysis, we do not
account for topological changes. Moreover, the merging of
topological features is not a continuous phenomenon. This
discontinuity is highlighted by the presence of a kink in the
evolution of the response function in Fig. 21. Merging of
the two inclusions is represented by a spike in the shape
sensitivity plots.

Figure 22 shows the behavior of the response func-
tion and the corresponding shape sensitivities in the region
where the inclusions merge, upon refinement in mesh. The
magnitude of the spike oscillates at smaller values of the
mesh size, h. This behavior is a result of using the KS func-
tion which smears out the level set field. The intensity of this
smearing varies with the mesh size, further leading to incon-
sistent design geometries between different mesh sizes. This
inconsistency is mitigated by using a high KS aggrega-
tion parameter. Figure 23 presents the shape sensitivities for
design geometry constructed using a KS aggregation param-
eter of 200. The magnitude of the spike in Fig. 23 converges

with mesh refinement. It is thus inferred that the spike is not
a byproduct of the Heaviside-enriched XFEM or the geom-
etry discretization, but the spike is a result of the physics
associated with the merging phenomenon itself.

5.4 Example 4

We consider a void spherical inclusion surrounded by an
incompressible fluid in a rectangular box as depicted in
Fig. 24. In contrast to the previous examples, the current
problem setup is governed by a nonlinear set of equations in
3D. The goal is to show the applicability of the numerical
framework discussed previously, to such problems. A flow

Fig. 24 Incompressible fluid flow with void spherical inclusion
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Fig. 25 Response function and
shape sensitivities for problem
setup in Fig. 24
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of Reynolds number 10 is considered. The fluid density and
viscosity are assumed to be 1. The inclusion has an initial
radius of 0.5, and is centered at x = (2, 2, 2). No-slip condi-
tions are enforced along the fluid-void interface. A parabolic
laminar flow is prescribed at the inlet. Due to the uniform
cross sections of the inlet and outlet, the pressure loss inside
the channel depends solely on the geometry of the inclusion.
Shape sensitivities are computed for the response function,
Z , defined as the difference in total pressure between the
inlet and outlet, with the design variable, s, being the radius
of the spherical inclusion. The radius is varied between
s = 0.5 and s = 1 in constant increments of �s = 0.01. The
response function and the corresponding shape sensitivities
for a uniform element size of h = 0.1 are plotted in Fig. 25.
A smooth behavior of semi-analytical shape sensitivities is
observed. Plotted alongside the semi-analytical sensitivities
are the finite differenced shape sensitivities. As reported in
Section 5.1.2, the semi-analytical sensitivities are in agree-
ment with the finite differenced sensitivities except for when
the material interface lies within the critical shift region, for
instance at s = 0.9. Thus aside from being costly, finite
differencing produces outliers in shape sensitivities.

6 Conclusions

Shape sensitivities with the Heaviside-enriched XFEM were
studied. Shape derivatives are computed using the adjoint
method. An important component of the adjoint and direct
methods is the computation of the derivative of the resid-
ual of the governing equations with respect to the design
variables, ∂R/∂s. Consequently, we presented and stud-
ied a continuum and a discrete approach to computing the
residual derivative.

Use of kink enrichments results in an explicit depen-
dency of the solution field on the design variables which
can complicate the derivation and implementation of shape
sensitivities as shown by Noël et al. (2016). The Heavi-
side enrichment does not suffer from any such dependency.

For volumetric terms, analytical sensitivities can be com-
puted in a straightforward manner by performing integration
over the material boundary as discussed in Section 4.1.
However, for terms evaluated along the material bound-
aries, the derivation is complicated by the mapping of global
domains in d spatial dimensions to a reference domain in
d − 1 dimensions. Accounting analytically for the change
in this mapping with respect to design variables requires the
computation of the curvature which requires second order
spatial derivatives of the finite element discretized level set
field. However, topology optimization problems typically
make use of lower order elements, for which second order
spatial derivatives do not exist.

Computing semi-analytical shape sensitivities which
involve finite differencing the term ∂R̂e/∂ x̂

k
Γ in (34) is

an effective and easy to implement alternative. The cor-
responding shape sensitivities were observed to be nearly
insensitive to perturbation sizes ranging over six orders
of magnitude. In accordance with the adopted multi-level
enrichment strategy, the interface is not allowed to intersect
a node. This is achieved by shifting the material inter-
face when the interface comes within a critical distance of
a node. It was observed that performing this shift in the
interface position during the finite difference perturbations
resulted in inaccurate computation of shape sensitivities. To
maintain accuracy of the shape sensitivities, it is important
that the finite difference perturbations do not undergo any
interface shift within the critical shift distance. While finite
differencing ∂R̂e/∂ x̂

k
Γ , design perturbations may result in

the material interface crossing over to a neighboring ele-
ment. To ensure central finite differencing of ∂R̂e/∂ x̂

k
Γ , the

finite difference perturbation size is chosen to be less than
the critical shift distance.

Accuracy of the semi-analytical shape sensitivities was
established via comparisons against finite differenced shape
sensitivities. A numerical comparison with shape sen-
sitivities obtained using body-fitted meshes was made.
Although the latter frameworks resulted in smoother sen-
sitivities, the relative difference between XFEM-based and
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FEM-based shape sensitivities was small. This relative dif-
ference further reduces upon mesh refinement. One dis-
advantage of the Heaviside-enriched XFEM is the need
for interface conditions to enforce continuity in solution
across the material interface. The accuracy (relative to a
body-fitted mesh) of the shape sensitivities was found to
be influenced by how strongly the interface conditions are
enforced. The dependency of shape sensitivities on the dis-
cretization of the design geometry was illustrated through
an example using a circular inclusion. Distinct correlation
was observed between the smoothness of the shape sen-
sitivity and discretization of the inclusion geometry. As a
result, it is possible to obtain smoother sensitivities through
mesh refinement. A two inclusion problem was studied to
demonstrate the effect of merging topologies on shape sen-
sitivities. Merging of topologies, not being a continuous
phenomenon, resulted in a kink in the response function
and a distinct spike in the shape sensitivities. For the par-
ticular problem considered, the magnitude of the spike was
shown to converge with refinement in mesh, leading to the
inference that the spike is independent of the Heaviside-
enriched XFEM or the geometry discretization. Application
to an incompressible fluid flow example demonstrated the
suitability of the Heaviside-enriched XFEM framework for
the computation of shape sensitivities for 3D nonlinear
problems.

Future studies should focus on shape sensitivities for
transient problems including temporally evolving material
interfaces. Furthermore, the effect of gradient stabiliza-
tion techniques, such as the fictitious domain approach of
Burman and Hansbo (2012), on the computation of shape
sensitivities needs to be studied.
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Appendix A

CAD-free based shape optimization studies use the nodal
coordinates of the element as the design variables. Here
we draw a quantitative comparison between shape sensi-
tivities obtained using the approach proposed in the cur-
rent study (Eulerian framework), and shape sensitivities
obtained using a body-fitted mesh (Lagrangian framework).

Heaviside enriched XFEM :

FEM:

(void)

Fig. 26 Heat diffusion problem setup in 1D

We consider a 1D linear heat diffusion problem depicted
in Fig. 26. A unit heat flux is applied to node 3 and to the
interface xΓ , in the body-fitted and XFEM cases respec-
tively. For the XFEM case, phase 2 is void of any material.
Consequently, the setups shown in Fig. 26 are physically
equivalent. The response, Z is the temperature measured at
node 2. As discussed in Section 4.2, shape sensitivities van-
ish for elements not intersected by the material interface.
Thus, we draw comparisons for the second element only, the
system of equations for which can be expressed as

FEM:
[

1
L1

+ 1
L2

− 1
L2− 1

L2

1
L2

][

û2

û3

]

=
[

0
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x3−x2

− 1
x3−x2

− 1
x3−x2

1
x3−x2
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û2

û3

]

=
[

0
1

]

,

XFEM:
⎡

⎣

1
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+ L2
L2

0
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L2
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−L2
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0

L2
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⎤
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û∗
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û∗
3

]

=
[

L0−L2
L0
L2
L0

]

=⇒
[

1
x2−x1

+ (xΓ −x2)

(x3−x2)
2 − xΓ −x2

(x3−x2)
2

− xΓ −x2
(x3−x2)

2
xΓ −x2
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2

][

û∗
2

û∗
3

]

=
[

x3−xΓ

x3−x2
xΓ −x2
x3−x2

]

,(50)

where the force vector for the XFEM was obtained using the
residual contribution from the Neumann boundary condition
in (10). The discretized solution using FEM and XFEM are
denoted by û and û∗ respectively. Note, it is trivial to show
following a few calculations that û∗(xΓ ) = û3 = L1 +
L2 and dû∗(xΓ )/dxΓ = dû3/dx3 = 1, thus proving the
equivalence of the two approaches.

To compute the shape sensitivities using the adjoint
approach (Section 4), we require the derivatives of the
response function with respect to the solution, and derivative
of the residual with respect to the solution and the material
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interface. Following (50), the residual of the two systems is
written as

FEM:
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û2
1

x2−x1
+ û2

1
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− û3
1
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−û2
1
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− 1

]

,

XFEM:

R=
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1
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2

xΓ −x2
(x3−x2)

2 + û∗
3
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x3−x2

]

. (51)

The residual derivatives with respect to the material
interface are then given by

FEM:
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,

XFEM:
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=
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û∗
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1
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−û∗
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1
(x3−x2)

2 + û∗
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1
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2 − 1
x3−x2

]

. (52)

The residual derivatives with respect to the solution are
given by the left hand side matrices in (50). The derivative
of the response function with respect to the solution is same
for the two approaches, and is given by,

∂Z
∂û∗ = ∂Z

∂û
=
[

1
0

]

. (53)

The vector of adjoint variables is computed using (23) to
give

λ = −
(

∂R
∂û

)−1
∂Z
∂û

=
[

x1 − x2

x1 − x2

]

,

λ∗ = −
(

∂R
∂û∗

)−1
∂Z
∂û∗ =

[

x1 − x2

x1 − x2

]

, (54)

where λ and λ∗ denote the vector of adjoint variables for the
FEM case and the XFEM case respectively. The shape sensi-
tivities are readily obtained following a dot product between
(54) and (52). Upon comparison of the sensitivities obtained
using the two frameworks, a sign change in the sensitivi-
ties resulting from (52) is evident, along with the presence
of an additional term in the XFEM case. This difference is
the result of extrapolating the force vector from the material
interface on to the finite element nodes.
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Abstract This paper presents an immersed boundary
approach for level set topology optimization considering
stress constraints. A constraint agglomeration technique
is used to combine the local stress constraints into one
global constraint. The structural response is predicted by the
eXtended Finite Element Method. A Heaviside enrichment
strategy is used to model strong and weak discontinuities
with great ease of implementation. This work focuses on
low-order finite elements, which given their simplicity are
the most popular choice of interpolation for topology opti-
mization problems. The predicted stresses strongly depend
on the intersection configuration of the elements and are
prone to significant errors. Robust computation of stresses,
regardless of the interface position, is essential for reli-
able stress constraint prediction and sensitivities. This study
adopts a recently proposed fictitious domain approach for
penalization of displacement gradients across element faces
surrounding the material interface. In addition, a novel
XFEM informed stabilization scheme is proposed for robust
computation of stresses. Through numerical studies the
penalized spatial gradients combined with the stabilization
scheme is shown to improve prediction of stresses along the
material interface. The proposed approach is applied to the
benchmark topology optimization problem of an L-shaped
beam in two and three dimensions using material-void and
material-material problem setups. Linear and hyperelastic
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materials are considered. The stress constraints are shown
to be efficient in eliminating regions with high stress con-
centration in all scenarios considered.

Keywords Topology optimization · Level set methods ·
Stress constraints · Spatial gradient stabilization ·
Hyperelasticity

1 Introduction

Since the seminal work on topology optimization by
Bendsøe and Kikuchi (1988) a significant body of research
has focused on stiffness oriented problems where structural
compliance or displacements constitute the objective func-
tion subject to a volume constraint. Accounting for stress
constraints is important for the design of engineering struc-
tures. Without considering appropriate stress constraints,
the strength of the material is ignored. As a result, over
the past decade, there has been a growing interest in the
study of topology optimization problems considering stress-
based objective or constraints. Alternatively, structures can
be designed based on damage (cf. James and Waisman
2014; Verbart et al. 2016), fatigue (Holmberg et al. 2014),
or elastoplasticity (Amir 2017) to prolong the structural life.

Density-based methods have been used widely to solve
topology optimization problem considering stress-based criteria.
Topology optimization of continuum structures with point-
wise stress constraints was first addressed by Duysinx
and Bendsøe (1998). Their study presents an approach
for solving material distribution problems with stress con-
straints using the Solid Isotropic Material with Penaliza-
tion (SIMP) framework. The ε-relaxed approach of Cheng
and Guo (1997) was used to deal with the singularity
phenomenon caused by degenerated design subspaces when
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dealing with stress constraints in topology optimization.
Imposing local stress constraints provides local control of
the stress level. However, solving the optimization problem
becomes more time consuming and complex as the num-
ber of nonlinear constraints increases with mesh refinement.
To reduce the computational effort, there have been many
studies on approaches for incorporating global stress mea-
sures into the optimization problem formulation (cf. Yang
and Chen 1996; Duysinx and Sigmund 1998; Parı́s et al.
2008). The p-norm and the Kreisselmeier-Steinhauser (KS)
function have been widely used for approximating local
stresses at the global level. At the cost of some accuracy
in satisfying stress constraints locally, the number of con-
straints is drastically reduced. Le et al. (2010) and Parı́s
et al. (2010) employ regional stress constraints as a com-
promise between global and local stress constraints. The
regional stress measures improve the local approximation of
stresses while keeping computational costs in check. In con-
trast to most stress-based optimization studies, which adopt
the von Mises yield criterion, Bruggi and Duysinx (2012)
focused on the Drucker-Prager failure criterion to take into
account the behavior of pressure-dependent materials such
as concrete, polymers, and composite structures.

During the optimization process in density-based
approaches, there may exist grey regions comprising of
elements with intermediate densities. The geometry of the
material interface is represented by either large spatial gra-
dients or by jumps in the density fields, depending on the
discretization of the density distribution and the method of
enforcing convergence to a discrete material distribution.
Unless the interface is aligned with the discretization of the
density field, the interface is either smeared across elements
or approximated by a jagged boundary. Either scenario
leads to a description of the interface geometry that proves
challenging when predicting stresses accurately along the
material interface. Additionally, the relationship between
the allowable stress and the material density needs to be
specified, as discussed by Duysinx and Bendsøe (1998).

The above mentioned issues have been overcome in
recent years through the use of the Level Set Method (LSM)
which allows for a crisp representation of the material
boundaries (cf. Osher and Sethian 1988; Osher and Santosa
2001). In the LSM, the geometry of the material bound-
aries is described explicitly by the iso-contour of the level
set function (LSF), φ, at a particular value, typically φ = 0
(cf. Sethian and Wiegmann 2000; Wang et al. 2003; Allaire
et al. 2004). Smooth changes in the LSF lead to changes in
the geometry of the domain including merging of geomet-
ric features. An important aspect of level set-based methods
is the mapping of the geometry to a mechanical model.
In the context of topology optimization, Ersatz material
approaches and immersed boundary methods are the most
popular options of geometry mapping. The Ersatz material

approach requires interpolation of physical properties as
functions of the LSF. As in density-based methods, such as
SIMP, this may lead to smearing of the material interface,
affecting the resolution and accuracy of the finite element
predictions along the material boundaries (Dijk et al. 2013).

To overcome the issues associated with density-based
mapping we adopt an Eulerian approach that utilizes the
eXtended Finite element Method (XFEM), developed by
Moës et al. (1999), to model the physical response of the
mechanical problem. The XFEM is an immersed bound-
ary technique that uses an enrichment function to locally
capture the non-smooth solution of state variable fields
along the material interface without requiring a conform-
ing mesh. Depending on the type of discontinuity, various
enrichment strategies have been developed as discussed by
Fries and Belytschko (2010). The combination of the LSM
and the XFEM is referred to as the LSM-XFEM approach
and is often classified as a generalized shape optimization
approach (Duysinx et al. 2006). This classification stems
from the fact that the approach allows for topology modifi-
cations as existing holes can merge or disappear altering the
topology of the design.

The first study to focus on stress-based shape opti-
mization using the LSM-XFEM approach was presented
by Van Miegroet and Duysinx (2007). They studied the
problem of minimizing stress concentration, in a 2D filet
in tension. They highlighted the problem of overestima-
tion of stresses resulting from extremely small (or large)
ratios of intersected areas within an intersected element.
To maintain the accuracy of the computed stresses, strate-
gies such as elimination of small intersections by shifting
of the material interface were suggested. Guo et al. (2011)
applied the LSM-XFEM approach to stress-related topol-
ogy optimization problems. This approach was extended
to problems involving multi-phase materials by Guo et al.
(2014). However, issues concerning inaccurate computation
of stresses resulting from position of the material interface
were not dealt with in either of the studies. Recently Pola-
jnar et al. (2017) performed structural optimization studies
based on a global stress-deviation measure for material-void
problems. To circumvent the problem of overestimation
of stresses, elements with small intersection areas were
ignored from the finite element analysis. Additionally, they
post-processed the stresses using the patch recovery method
of Zienkiewicz and Zhu (1992) to give smoothed stress val-
ues at the nodes. Noël and Duysinx (2017) applied the LSM-
XFEM framework to shape optimization of microstructural
designs subject to local stress constraints. They use an area
weighted smoothing to post-process stresses associated with
intersected elements. Cai et al. (2014) used the B-spline
Finite Cell Method to achieve a high-order continuity and
stress accuracy along cell boundaries, in shape and topology
optimization.
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As mentioned above, the accuracy of stresses in the
XFEM around the material interface is affected by extreme
ratios of intersected areas within an intersected element.
Low-order finite elements, given their simplicity and ease
of implementation are the most popular choice of interpo-
lation for topology optimization problems. The influence of
small intersection areas on the accuracy of spatial gradients
is aggravated when using low-order elements. Inaccurate
displacement gradients lead to inaccurate stresses which can
further affect the outcome of the design optimization pro-
cess. Focusing on this issue and improving the prediction of
stresses presents the primary goal of this paper. We use the
fictitious domain approach of Burman and Hansbo (2014)
in conjugation with a novel XFEM informed smoothing
scheme for the computation of stresses, to present a sim-
ple and efficient approach to improve the computation of
the stresses on low-order elements. We incorporate the
stabilized stresses in an optimization framework to solve
material-void and material-material topology optimization
problems. Material-void problems are solved using a com-
pliance minimization formulation subject to volume and
global stress constraints. Material-material problems are
solved using a volume minimization formulation subject
to global stress constraints. We adopt the von Mises stress
measure to define the stress constraints. Shape sensitivities
are computed by the adjoint method. Through a numeri-
cal study we investigate the accuracy and robustness of the
proposed approach for computation of stresses and corre-
sponding sensitivities along material interfaces. We present
optimization studies in 2D and 3D using the benchmark
topology optimization problem of an L-shaped beam. We
consider linear and hyperelastic materials.

The remainder of the manuscript is organized as follows:
Section 2 presents the LSM for the description of geome-
try; Section 3 presents the governing equations, the XFEM
discretization, and a robust approach for computation of
stresses; Section 4 presents the optimization problem for-
mulations and the corresponding sensitivity analysis using
the adjoint method; in Section 5 we present numerical
examples to analyze and validate the proposed approach;
finally, a summary and concluding remarks are presented in
Section 6.

2 Geometry description

The current study is illustrated using the model problem
depicted in Fig. 1. Our model problem consists of one or
more stationary inclusions (material or void) embedded in
a matrix. The spatial domain is defined by � ⊂ R

d for
d spatial dimensions. This spatial domain is composed of
two non-overlapping material subdomains (also referred to
as material phases), �A and �B , such that � = �A ∪

Fig. 1 Schematic of the model problem

�B . The boundaries for the material domains �A and �B

are expressed as ∂�A and ∂�B respectively. The outward
normal vector to these boundaries is denoted by n. The
Dirichlet and Neumann boundaries are denoted by �m

D =
∂�m ∩ ∂�D and �m

N = ∂�m ∩ ∂�N respectively, where
m = A, B. We consider a sharp material interface, �AB ,
defined as �AB = ∂�A ∩ ∂�B . The outward normal along
the material interface �AB , with respect to ∂�A, is denoted
by n� .

Using the LSM, the material layout in Fig. 1 is defined
by a LSF φ(x) such that:

φ(x) < 0, ∀ x ∈ �A,

φ(x) > 0, ∀ x ∈ �B,

φ(x) = 0, ∀ x ∈ �AB, (1)

where the vector x denotes the spatial coordinates. The
LSF is mapped onto the XFEM mesh by evaluating the
parametrized LSF at the nodes. Standard finite element
shape functions are used to interpolate the LSF value at a
point within an element. To this end we discretize the LSF
using bilinear (in 2D) and trilinear (in 3D) finite elements.

Instead of updating the LSF by the solution of the
Hamilton-Jacobi equation (see e.g. Wang et al. 2003; Allaire
et al. 2004), in this work the parameters of the discretized
LSF are defined as explicit functions of the optimiza-
tion variables. Each node, i, of the finite element mesh is
assigned an optimization design variable, si . The LSF value,
φi , for node i is then defined through an explicit function of
the optimization variables using a level set filter as follows:

φi =
∑Nn

j=1wij sj
∑Nn

j=1wij

, (2)

where

wij = max
(
0, rφ − ∣

∣xi − xj

∣
∣
)
. (3)
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Here Nn is the number of nodes in the finite element mesh
and rφ is the smoothing filter radius. The linear filter (2)
widens the zone of influence of the design variable on the
level set field resulting in enhanced convergence of the opti-
mization process (Kreissl and Maute 2012). In the absence
of a level set filter φi = si .

Level set-based optimization approaches require seeding
the initial design with inclusions and/or introducing inclu-
sions in the course of the optimization process, for example
via topological derivatives (Burger et al. 2004). The opti-
mization results using the LSM are typically dependent on
the initial layout of such inclusions. For a detailed discus-
sion on the LSM within the context of shape and topology
optimization, the reader may refer to the comprehensive
review by Dijk et al. (2013).

3 Structural analysis

This section presents the variational form of the governing
equations for linear elastic and hyperelastic structural anal-
ysis of the model problem in Fig. 1, followed by a brief
overview of the adopted XFEM discretization and a robust
approach for accurate computation of stresses in the XFEM.

3.1 Variational form of governing equations

We adopt the standard Galerkin approach in defining the
solution spaces U = UA × UB and the weighting spaces
V = VA × VB over the domain �, such that

Um =
{
um ∈ H 1 (

�m
) ; um = uD on �m

D

}
,

Vm =
{
vm ∈ H 1 (

�m
) ; vm = 0 on �m

D

}
, (4)

where um and vm are the displacement field and the cor-
responding weighting function respectively, for material
phases m = A, B . The spaces U and V are Hilbert man-
ifolds consisting of vector functions with square integrable
first derivatives.

The weak form for linear elastic structural analysis is
augmented with the Nitsche’s method (Stenberg 1995), to
satisfy continuity of solution and traction across the inter-
face in material-material problems. The weak form is stated
as: Find u such that

RE = RE
� + RE

�N
+ RE

�AB
= 0 ∀ v ∈ V, (5)

where RE
� is the residual of the volumetric contribution,

RE
�N

is the residual contribution from the Neumann boundary,

and RE
�AB

is the residual contribution from the interface
conditions. These residual contributions are given by

RE
� =

∑

m=A,B

∫

�m

ε(vm) : σ (um) dx,

RE
�N

= −
∑

m=A,B

∫

�m
N

vm tN ds,

RE
�AB

= −
∫

�AB

[[v]]{σ (u)} · n� ds

−
∫

�AB

{σ (v)} · n�[[u]] ds

+ γ�

∫

�AB

[[v]][[u]] ds. (6)

The displacement, uD , is specified on the Dirichlet bound-
ary, �m

D , and traction, tN , is specified on the Neumann
boundary, �m

N . The materials are assumed isotropic. The
Cauchy stress tensor, σm, is defined using the constitutive
model

σm = Dmεm = Dm 1

2

(
∇um + (∇um)T

)
, (7)

where Dm is the fourth order constitutive tensor for the
isotropic material belonging to material phase m, and εm is
the infinitesimal strain tensor.

The jump and averaging operators are defined as [[u]] =
(u)B − (u)A and {σ } = γ AσA + γ BσB respectively. The
constants γ� , γ A, and γ B determine the accuracy with
which the interface conditions are satisfied. Following the
work of Annavarapu et al. (2012) we define these constants
as

γ� = 2 c�

meas(�AB)

meas(�A)/EA + meas(�B)/EB
,

γ m = meas(�m)/Em

meas(�A)EA + meas(�B)/EB
, (8)

where Em is the Young’s modulus associated with mate-
rial phase m. The user defined penalty c� determines how
strongly the interface constraints are enforced. A high value
of c� ensures better enforcement of the interface conditions
but may lead to poor conditioning of the underlying system
of equations. The operator meas(·) refers to the Lebesgue
measure of the respective quantity.

We also consider solid-void problems considering finite
strains using the Saint Venant-Kirchhoff hyperelastic
model. The hyperelastic model involves solving for the vec-
tor displacement field, u(x), in �A. Phase B is void of any
material. In the context of material nonlinearity, equilibrium
is formulated with respect to a reference undeformed con-
figuration and the weak form is stated as: Find uA such
that

RH = RH
� + RH

�A
N

∀ vA ∈ VA. (9)
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Here RH
� is the residual of the volumetric contribution

and RH

�A
N

is the residual contribution from the Neumann

boundary. These contributions are given by:

RH
� =

∫

�A0
F(vA) : P(uA) dx,

RH

�A
N

= −
∫

�A
N0

vA tN ds. (10)

Here uA is the restriction of u to �A0 . The displacement,
uD , is specified on the Dirichlet boundary, �A

D0
, and trac-

tion, tN , is specified on the Neumann boundary, �A
N0

. The
subscript ‘0’ refers to entities defined in the undeformed
configuration. The first Piola-Kirchhoff stress in phase A

is denoted by PA. The Saint Venant-Kirchhoff hyperelastic
material model is defined as:

�A = μA

4

(
CA(CA)T − 2 tr(CA) + 3

)

+ λA

8

(
tr(CA) − 3

)2
, (11)

with the corresponding nonlinear kinematic relations in
phase A given by:

CA = (FA)T (FA),

FA = ∇0(xA),

PA = det (FA)σA(FA)−T ,

xA = uA + xA
0 , (12)

where �A denotes the strain energy density model for a
Saint Venant-Kirchhoff hyperelastic material. The Lamé
parameters are denoted by μA and λA. The right Cauchy
strain tensor is denoted by C, and F is the deformation gra-
dient that accounts for the motion of the spatial coordinate
in the deformed configuration, xA, with respect to the spatial
coordinate in the undeformed configuration, xA

0 .
Note, we consider single-phase hyperelastic problems

wherein the solution or traction are not required to be
continuous across the material-void interface. Hence no
interface conditions are enforced.

3.2 XFEM

To capture non-smooth displacement fields across material
interfaces the traditional finite element method requires a
conforming mesh. In the XFEM, this requirement is elimi-
nated by augmenting the standard finite element interpola-
tion by additional enrichment functions. These enrichment
functions capture discontinuities in either the state variables
or their spatial gradients. Following the work by Terada
et al. (2003), Hansbo and Hansbo (2004), and Makhija and
Maute (2014), a generalized Heaviside enrichment strategy
with multiple enrichment levels is adopted. This enrichment
strategy ensures that the solution field is interpolated in a

consistent manner, and avoids any artificial coupling due
to disconnected material phases. This enrichment strategy
has been successfully applied to topology optimization of
linear elasticity problems by Villanueva and Maute (2014),
to incompressible Navier-Stokes problems by Jenkins and
Maute (2015), to heat diffusion by Lang et al. (2015), and to
natural convection problems by Coffin and Maute (2016).

For a two-phase problem, the approximation of the dis-
placement field, u(x), denoted as û(x), using the Heaviside-
enriched XFEM is given by

û (x) =
Ne∑

e=1

(

H(−φ(x))
∑

i∈I

Ni (x)uA
i,eδ

A,i
el

+ H(+φ(x))
∑

i∈I

Ni (x)uB
i,eδ

B,i
el

)

, (13)

with the Heaviside function, H , defined as

H(z) =
{

1 z > 0
0 z ≤ 0

. (14)

Here I is the set of all nodes in the finite element mesh,
Ni (x) is the nodal basis function associated with node i,
Ne is the maximum number of enrichment levels, and um

i,e

is the vector of displacement degrees of freedom associated
with node i for material phase m ∈ (A, B). The Kronecker
delta δ

m,i
el selects the active enrichment level l for node i and

phase m such that only one set of degrees of freedom are
used for interpolating the solution at point x, thereby satis-
fying the partition of unity principle introduced by Babuška
and Melenk (1997). The active number of enrichment levels
depends on the number of disconnected regions of the same
phase included in the support of Ni (x). For a more compre-
hensive understanding of the adopted enrichment strategy
the reader is referred to the study by Makhija and Maute
(2014).

The Heaviside-enriched XFEM requires integrating the
weak form of the governing equations separately in each
material phase. To this end integration subdomains are
generated by decomposing the intersected elements into
triangles in 2D and into tetrahedrons in 3D. The decom-
position approach adopted in the current study is discussed
in detail by Villanueva and Maute (2014). The adopted
generalized Heaviside enrichment strategy requires that the
material interface never intersect a node. Hence intersec-
tions directly through a node or an element edge are avoided
by enforcing φi 	= 0. Effects of enforcing this rule on the
computation of shape sensitivities have been addressed by
Sharma et al. (2017).
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3.3 Ghost penalty: face oriented stabilization of spatial
gradients

Material interface too close to a node can lead to small inter-
section areas. These small regions correspond to vanishing
zone of influences for certain degrees of freedom. Aside
from adversely affecting the condition number of the sys-
tem, small intersections can result in uncontrolled displace-
ment gradients across element edges leading to inaccurate
prediction of these gradients around the material interface.
As discussed in Section 1, in the context of stress-based
topology optimization using low-order elements inaccurate
displacement gradients lead to inaccurate stresses which can
affect the optimization results. When considering stress-
based objectives or constraints, inaccurate and oscillatory
stresses can lead to unreliable sensitivities. For a nonlin-
ear structural model inaccurate displacement gradients can
affect the stability of the system of equations. To maintain
stability of the system and ensure the convergence of stress
prediction with mesh refinement, we adopt the ghost penalty
approach introduced by Burman and Hansbo (2014).

We consider the set of element faces, Fcut , belonging to
intersected elements, Ecut , as shown in Fig. 2. For each face,
F ∈ Fcut , there exist two elements (one of which is the
intersected element itself), E1 and E2, such that F = E1 ∩
E2. The jump in the displacement gradients across this face
is then penalized by augmenting the left hand side of (5) and
(9) with the following term.

RE
F = RH

F =
∑

F∈Fcut

∑

m=A,B

∫

F

γuE
mh

[∇vm
] [∇um

]
ds,

(15)

where Em is the elastic modulus of phase m, and γu

is a penalty parameter. The choice of γu is discussed in
Section 5.1. The jump in the displacement gradient is
defined as

[∇um
] = nF · ∇um|E1 −nF · ∇um|E2 , where nF

denotes the unit normal to the face, F . The orientation of nF

does not matter as long as it is normal to the face and consis-
tent across neighboring elements. Note that only the jump of
the displacement gradients in normal direction is penalized.

This face oriented stabilization of spatial gradients
presents two advantages - i) Smooth displacement gradients
are obtained along the material interface. ii) The zone of
influence of degrees of freedom no longer vanishes because
(15) requires integration over the entire face independent
of the location of the intersection. A drawback is that the
framework results in a non-smooth behavior of stresses
as the material interface transitions from one element to
another. This is a result of the on/off nature of (15), and is
further discussed in Section 5.1. Since F = E1 ∩E2, by def-
inition faces along the boundary of the mesh are excluded
from the set Fcut . A solution to this issue is presented in
Section 5.2.

For further details on ghost penalty including analy-
sis of a priori error estimates the reader is referred to the
comprehensive study by Burman and Hansbo (2014).

3.4 XFEM informed smoothing of stresses

To avoid overestimation of stresses Van Miegroet and
Duysinx (2007) proposed several strategies, most of which
involved eliminating stresses when the intersected area was
too small. Recently Noël and Duysinx (2017) adopted an
area weighted smoothing using an elemental average strat-
egy for post-processing of stresses in an intersected element.
The authors noted that such a smoothing does not ensure
avoidance of overestimation of stresses. For comparison
with the approach proposed in the current study, we com-
pute area weighted stresses using a nodal average strategy.
This is because nodal averaged stresses provide a sharper
stress distribution as compared to elemental stresses, in
regards to the smoothing area as shown in Fig. 3. The
smoothed stress tensor for node i, σ i , using a nodal average
strategy is computed as

σ i =
∑

E∈Nbi
σEi

AE
∑

E∈Nbi
AE

. (16)

Fig. 2 Stabilized faces in a
two-phase problem
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Fig. 3 Area weighted smoothing using an elemental average strategy
(top) and a nodal average strategy (bottom)

Here Nbi is the combined set of intersected and uninter-
sected elements sharing the node i as shown in Fig. 3, AE
and σEi

are the area and nodal stress tensor of element,
E , respectively. Following the definitions of the respective
neighborhoods, it is noted that the elemental average strat-
egy is more diffusive as compared to the nodal average
strategy. In Section 5.1 we demonstrate the ineffectiveness
of an area weighted smoothing, resulting in overestimation
of stresses and unreliable stress sensitivities.

In the current study, we introduce a scalar stress field, τ ,
using an XFEM informed smoothing procedure. Using the
solution of the displacement field we solve the following
equation, to obtain a gradient stabilized scalar stress field
within a Heaviside-enriched XFEM framework.

RS
� + RS

F = 0 ∀ η ∈ V =⇒
∑

m=A,B

(∫

�m

ηm τm dx −
∫

�m

ηm S
(
um

)
dx

)

+
∑

F∈Fcut

∑

m=A,B

∫

F

γτ h
[∇ηm

] [∇τm
]

ds = 0. (17)

Here S is a scalar function of the components of the Cauchy
stress tensor, e.g. axial stress, principal stress, and von
Mises stress, computed using the displacement fields, um.
In the present study S is the von Mises stress function. The
smoothed scalar stress field is denoted by τm, with ηm being
the corresponding weighting function. The functions τm

and ηm belong to Hilbert manifolds, U and V respectively,
consisting of scalar functions with square integrable first
derivatives. Note, the scalar stress field is computed using
the displacement field subjected to ghost penalty. Thus the
ghost penalty terms in (17) provide a second level of spatial
gradient stabilization.

In comparison with an area weighted smoothing, the
XFEM informed smoothing ensures the avoidance of over-
estimation of stresses by penalizing the jump in spatial
stress gradients across elemental faces. It should be noted,
like the area weighted smoothing the XFEM informed
smoothing is just a post-processing step.

4 Optimization problem

The majority of previous work on stress constrained opti-
mization considers volume minimization problems subject
to stress constraints. For a material-void problem such a
formulation is ill-posed with the optimal solution being a
structure with zero volume. To avoid this issue in this work,
we formulate the optimization problem as a compliance
minimization problem subject to stress and volume con-
straints. While compliance minimization leads to an overall
decrease in stresses, stress constraints are required to eliminate
designs with local stress peaks. To promote smooth shapes
and discourage the formation of small geometric features
we augment the objective with a measure of the interface
perimeter (see Haber et al. 1996; Makhija and Maute 2014).
The optimization problem is formulated as follows.

mins cJJ (u(s)) + cPP(s)

s.t.

⎧
⎪⎨

⎪⎩

g(σV (τ(s)) ≤ 0
g(σ�(τ(s)) ≤ 0
V A(s)
V (s) − cV ≤ 0

, (18)

where J is the compliance integrated over the complete
domain, and P is the perimeter corresponding to the mate-
rial domain boundary. The penalties cJ and cP are associ-
ated with the compliance and perimeter respectively. These
are chosen such that the terms constituting the objective
function are of similar order throughout the optimization
process. The volume ratio of the material phase, V A, with
respect to the total volume, V , is constrained to be less than
or equal to cV . As discussed in the next section, the stress
constraints g(σV ) and g(σ�) are evaluated via integration
over the volume, �, and the material interface, �AB , respec-
tively. Unless operating on a fine mesh, g(σV ) alone is not
sufficient for capturing the stress distribution along material
interfaces. Hence an additional constraint, g(σ�), capturing
the stresses along the material is introduced. The need for
g(σ�) is pronounced in 3D problems using coarse meshes.
This is because on coarse meshes, evaluating a stress con-
straint using solely volume integration points is sometimes
ineffective in capturing stress singularities that might occur
at the surface. Consequently in the current study g(σ�) is
employed for 3D problems only.

For material-material problems a different optimization
problem formulation is considered wherein the objective is to
minimize the volume fraction of phase A. In contrast to a
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material-void setting, such a problem formulation is not ill-posed
because the design domain consists of at least one mate-
rial leading to a structural design with finite volume at all
times during the optimization process. For material-material
problems the optimization problem is formulated as follows.

mins cW
V A(s)
V (s) + cPP(s)

s.t. g(σV (τ(s)) ≤ 0
. (19)

Here cW is the penalty associated with the volume frac-
tion of phase A. Material-material problems are considered
in 2D only. Hence g(σ�) is not included in the problem
formulation of (19).

4.1 Formulation of stress constraints

Researchers have developed various approaches to include
stress measures into the optimization problem. Duysinx and
Bendsøe (1998) first applied point-wise or local stress con-
straints. Cheng and Jiang (1992) and Parı́s et al. (2008) have
used global stress functions to approximate local stresses.
Le et al. (2010) and Parı́s et al. (2010) employed regional
stress constraints as a compromise between global and local
stress constraints. Zhang et al. (2013) proposed a global
stress measure enhanced by boundary curvature and stress
gradient measures. Recently Polajnar et al. (2017) proposed
a stress-based objective function based on a global stress-
deviation measure. In the present study, we follow the work
of Parı́s et al. (2008) in our definition of global stress con-
straint measures, based on the KS function for constraint
aggregation proposed by Poon and Martins (2007). The
approach of Parı́s et al. (2008) is easy to implement and
sufficient to study the primary goal of this paper, which
strictly pertains to the characteristic of the stresses and their
derivatives that go into the stress-based optimization formu-
lations. Consequently, the findings of the current work are
applicable to any of the above mentioned approaches.

The global stress constraints approach implies the use
of one constraint that represents all local constraints. Given
a maximum allowable stress value, σmax , the global stress
constraints are defined as,

g(σV (τ(s)) = 1

βV

log
∫

�

e
βV

(
τ−σmax

σmax

)

dx

− 1

βV

log
∫

�

dx,

g(σ�(τ(s)) = 1

β�

log
∫

�

e
β�

(
τ−σmax

σmax

)

ds

− 1

β�

log
∫

�

ds. (20)

The stress constraints in (20) are formulated using the
smoothed stresses of (17). The parameters βV and β� are
tuning coefficients which penalizes the failure to satisfy the

stress constraint. As they tend to infinity the stress con-
straints become equal to (max(τ) − σmax)/σmax . However,
a large value of βV or β� renders the optimization prob-
lem unstable and difficult to solve due to the increasing
nonlinearity and badly scaled sensitivities of the stress con-
straints. Selection of the parameters βV and β� thus involves
a trade-off between accuracy of the global stress capturing
capability and stability of the optimization problem.

4.2 Sensitvity analysis

Within the framework of gradient based optimization, sen-
sitivity analysis computes the derivative of a response
function, Z(u(s), τ (s), s) (e.g. compliance, global stress
measure etc.), with respect to the vector of design variables,
s. The gradient of the response function in the case where Z

depends on u and τ , is stated as

dZ

dsi
= ∂Z

∂si
+

(
∂Z

∂u

)T
du
dsi

+
(

∂Z

∂τ

)T
dτ

dsi
, (21)

where the first term on the right hand side accounts for the
explicit dependency of the response function on the design
variables. The second and third terms on the right hand side
account for the dependency of the response function on the
state variables u and τ respectively.

We compute the implicit dependency using the adjoint
method. We begin by defining the residual of the system of
equations as follows:

Fig. 4 Cantilever beam setup (top), and mesh h = 0.05m (bottom).
Stresses are monitored along the highlighted region. All dimensions
are in m
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Fig. 5 Stress (N/m2) profile along the material interface: Area weighted smoothing (left), Area weighted smoothing with γu = 0.1h (middle),
XFEM informed smoothing with γu = 0, γτ = 0 (right)

RE,RH : Ru = 0,

RS : Kττ − S(u) = 0. (22)

The first equation in (22) corresponds to the system of equa-
tions presented in Section 3.1 augmented with (15), and
the second equation correspond to (17). Differentiating (22)
with respect to the design variable, si , we have

dRu

dsi
= ∂Ru

∂u
du
dsi

+ ∂Ru

∂si
= 0,

dRS

dsi
= Kτ

dτ

dsi
+ ∂Kτ

∂si
τ − ∂S

∂si
− ∂S

∂u
du
dsi

= 0. (23)

Using (23) we eliminate the derivative of the state variables
with respect to the design variables in (21) to arrive at the
gradient of the response function stated as

dZ

dsi
= ∂Z

∂si
− ∂Ru

∂si
λu −

(
∂Kτ

∂si
τ − ∂S

∂si

)

λτ , (24)

where the adjoint variables, λu and λτ , are obtained by
solving the following linear system of equations.

KT
τ λτ = ∂Z

∂τ
,

(
∂Ru

∂u

)T

λu = ∂Z

∂u
+

(
∂S
∂u

)T

λτ . (25)

Fig. 6 Stress (N/m2) profile along the material interface: XFEM informed smoothing with γu = 0.1h, γτ = 10−4h (left), γu = 0.1h, γτ =
10−3h (middle), and γu = 1.0h, γτ = 10−2h (right)

160



www.manaraa.com

A. Sharma and K. Maute

Fig. 7 Comparison of stress
sensitivities along material
interface for h = 0.025m (left)
and h = 0.005m (right)
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In the adjoint approach presented above, the cost of solving
the adjoint equations is equal to solving two linear system
of equations for each response function.

Derivatives with respect to the design variable in (24) are
discretized such that,

∂(·)
∂si

=
∑

j∈IE

N�∑

k=1

∂(·)
∂xk

�

∂xk
�

∂φj

∂φj

∂si
. (26)

Here N� is the number of interfaces present within the ele-
ment E , and IE is the set of all nodes belonging to the
element. The parametrization of the interface, x� , is based
on the definition of the level set field, φ. The product
∂xk

�/∂φj · ∂φj /∂si is computed analytically and depends
on the gradient of the level set field as well as the defini-
tion of the level set filter (2). The term ∂(·)/∂xk

� vanishes
everywhere except for intersected elements, and is com-
puted via finite differencing. The accuracy and robustness
of the sensitivities computed using the proposed approach
are discussed in detail by Sharma et al. (2017).

5 Numerical examples

We study the proposed LSM-XFEM approach by applying
it to linear elastic and hyperelastic problems in 2D and 3D.
In all examples presented, a 2D design domain is discretized
in space using bilinear quadrilateral elements, and the 3D
design domains are discretized using trilinear hexahedral
elements. All 2D linear elastic examples are solved under
the plane stress assumption. Enforcing plane stress condi-
tions for hyperelasticity is nontrivial (Holzapfel 2000). For
simplicity, the 2D hyperelastic examples are solved under
plane strain assumptions.

The design sensitivities of the objective and constraints
are computed using the adjoint approach presented in
Section 4.2. The nonlinear optimization problems of (18)
and (19) are solved by the Globally Convergent Method
of Moving Asymptotes (GCMMA) (Svanberg 2002). The
parameters controlling the adaptation of the initial, lower
and upper asymptotes are set to 0.5, 0.7, and 1.43 respec-
tively. A GCMMA constraint penalty of 104 was used for

Fig. 8 Stress plots using area weighted smoothing for r = 0.4743m

(top) and r = 0.4744m (bottom). Stress in N/m2
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Fig. 9 Stress profile along the
material interface for h = 0.05m

(top), h = 0.025m (bottom):
Area weighted smoothing (left),
XFEM informed smoothing
with γu = 0, γτ = 0 (middle),
XFEM informed smoothing
with γu = 0.1h, γτ = 10−4h

(right). Stress in N/m2 0
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all optimization examples. Convergence of the optimization
process is achieved if all constraints are satisfied and the
change in objective function is less than 0.1% for 10 con-
secutive iterations. The nonlinear problem of hyperelasticity
is solved using Newton’s method. The linearized system
of equations for all examples, of both the forward and the
sensitivity analysis are solved using a direct solver. All
numerical examples were solved in a quasi-static manner
using a single load increment.

The numerical studies presented in the remainder of this
section are organized as follows: In Example 1 we use a
2D cantilever beam to study the influence of ghost penalty
combined with XFEM informed smoothing on the compu-
tation of stresses. In Examples 2 and 3 we optimize the
design of a material-void L-shaped beam using an elastic
and hyperelastic material respectively, in both 2D and 3D.
Example 4 extends the proposed optimization approach to a
material-material 2D L-beam using linear elastic materials.

5.1 Example 1

Through this example we illustrate the effect of stabilizing
the spatial gradients on the computation of the stresses and
stress sensitivities. We focus on the accuracy, robustness,
and differentiability of the proposed approach. Comparisons
are drawn against stresses computed using a body fitted
mesh as well as stresses computed using area weighted
smoothing (16). The problem setup consists of a material-
void 2D cantilever beam of length 3m and height 1m as
shown in Fig. 4. The beam is assumed elastic with a Young’s
modulus, E = 104N/m2, and Poisson’s ratio, ν = 0.3. The
beam is fixed along its left edge. A point load of P = 10N

is applied at the bottom right corner of the beam. Within the
beam are two circular inclusions, each of radius r , centers
of which lie at x = (1, 0.5) and x = (2, 0.5). We moni-
tor the stresses along the upper-half interface of the circular
inclusion centered at x = (2, 0.5).

5.1.1 Accuracy

With r = 0.4742m we investigate the accuracy of stresses
along the material interface. The value of r is chosen such
that the interface configuration results in small intersec-
tion areas for all mesh sizes used in the current example.
Figures 5 and 6 plot the von Mises stress, σvM , as a function
of the central angle, θ , measured in degrees counterclock-
wise from point A in Fig. 4. The stresses are plotted for
various mesh sizes, h, for different values of stabilization
penalty parameters, γu and γτ . These stresses are com-
pared against a reference plot obtained using a body-fitted
mesh of size h = 0.005m. The body-fitted solution was
converged for this mesh size. Area weighted smoothing
with and without ghost penalty, as well as XFEM informed
smoothing without ghost penalty, i.e. γu = 0 and γτ =
0, result in oscillatory stresses. Upon mesh refinement,
these stresses do not converge to the body-fitted solution
as shown in Fig. 5. In contrast, stresses obtained using
XFEM informed smoothing of stress with ghost penalty
(Fig. 6) have a smoother profile along the interface and
converge with refinement in mesh. However, one should
be careful with their choice for the gradient stabilization
parameters. As expected and as shown in Fig. 6 a large value
of the ghost penalty parameter smooths out the stresses
extensively resulting in loss of stress profile capturing abil-
ity. Based on results presented in Figs. 5 and 6, for all
optimization studies we chose γu = 0.1h and γτ = 10−4h.

Fig. 10 Change in Fcut due to change in interface position
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Fig. 11 Variation in maximum stress with radius for mesh size h = 0.05m

We now investigate the accuracy of the stress sensitivi-
ties with respect to the inclusion radius, r . Figure 7 plots
the stress sensitivities corresponding to r = 0.4742m for
different mesh sizes of h = 0.025m and h = 0.005m. Ref-
erence sensitivities are obtained using a body-fitted mesh.
Area weighted smoothing and XFEM informed smooth-
ing without ghost penalty result in oscillatory sensitivi-
ties. Mesh refinement further aggravates the oscillations.
In contrast sensitivities corresponding to XFEM informed
smoothing with γu = 0.1h and γτ = 10−4h are smooth
and converge with refinement in mesh. Using larger values
of γu and γτ results in smoother stress profiles. Conse-
quently XFEM informed smoothing with γu = 1.0h and
γτ = 10−2h results in diminished sensitivities especially on
coarse meshes as can be seen for h = 0.025m.

(a) (b)

Fig. 12 L-beam with different load cases: a Load applied to right edge
(RE); b Load applied to upper end of flange (UF). All dimensions are
in m

5.1.2 Robustness

Having established the accuracy of the proposed approach
we now investigate its robustness. As explained by Van
Miegroet and Duysinx (2007) and as also discussed in
Section 1, small intersection areas lead to vanishing zone of
influences for certain degrees of freedom. This can result
in overestimation of stresses along the material interface. In
the authors’ experience this effect is exaggerated on coarse
meshes. We use mesh sizes of h = 0.05m and h = 0.025m

to analyze the stress profile along the material interface for
configurations with small intersection areas. A radius of r =
0.4743m results in one such configuration. A very small
increase in radius to r = 0.4744m results in a configuration
without small intersection areas. We compare the change in
stress profiles between the two intersection configurations
to establish the robustness of the proposed approach.

Table 1 Parameter list for topology optimization of single-phase 2D
linear elastic L-beam

Parameter Load case RE Load case UF

σmax 0.3N/m2 0.3N/m2

rφ 2.4 h 2.4 h

cJ 100 100

cP 0.005 0.008

cv 0.48 0.48

βV 14.7 15

GCMMA step size 0.01 0.01
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(a) (b)

Fig. 13 Finite element mesh, h = 0.2m, with initial seeding for load
cases: a RE; b UF

Figure 8 shows stress contour plots using area weighted
smoothing. Stress peaks resulting from small intersection
areas are evident. In Fig. 9 stress profiles along the material
interface corresponding to the two radii are compared. In
regions with small intersection areas, at r = 0.4743m, stress
peaks are observed when using area weighted smoothing. In
absence of small intersection areas, i.e. for r = 0.4744m,
no stress peaks are recorded with area weighted smoothing.
In contrast, stress profiles obtained via the XFEM informed
smoothing are unaffected by the size of intersection areas
and show minimal change in stress profiles between the two
radii. Note, the case of XFEM informed smoothing without
ghost penalty results in more conforming stress profiles as
compared to XFEM informed smoothing with ghost penalty.
This behavior is discussed in detail in the next section.

5.1.3 Differentiability

The framework of spatial gradient stabilization results in
non-smooth behavior of stresses and presents a differentia-
bility issue. Figure 10 demonstrates this issue. Recall from
Section 3.3, Fcut is the set of element faces across which
the spatial gradient is penalized. The members of this set
vary as the material interface crosses over into neighboring
elements. Mathematically, a change in Fcut leads to a dis-
continuous change in the stabilization penalty parameters,
γu and γτ , with the parameters alternating between non-zero
and zero values depending on whether the face is a mem-
ber of Fcut or not. As a result, the corresponding change
in the local stresses is discontinuous too. Hence the stress
profiles corresponding to XFEM informed smoothing with
γu = 0.1h, γτ = 10−4h in Fig. 9 are not as conforming as
those in absence of ghost penalty.

Figure 11 plots the maximum stress along the material
interface as the radius of the inclusion is varied from r =
0.153m to r = 0.483m. For XFEM informed smoothing
with γu = 0.1h, γτ = 10−4h, jumps for particular values
of r are observed. These values of r correspond to changes
in intersection configurations. Although XFEM informed
smoothing with ghost penalty results in small jumps in
stresses as the material interface transitions an element, the
overall smooth sensitivity profiles obtained using the pro-
posed approach make the proposed approach an attractive
option for gradient-based optimization.

Shape sensitivities in the current work are computed
semi-analytically, as discussed in Section 4.2. The finite dif-
ferencing aspect of the sensitivity analysis adopted, requires
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Fig. 14 Evolution of objective and constraints for load case RE
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Fig. 15 Evolution of objective and constraints for load case UF

perturbation of the material interface. If these finite dif-
ference perturbations result in the material interface transi-
tioning an element, the ghost penalty technique will result
in inaccurate sensitivities due to jumps in stresses as dis-
cussed above. The sensitivity analysis approach adopted in
this work (see Sharma et al. 2017), is however unaffected by
this issue as it is ensured that a material interface does not
transition an element over the course of sensitivity analysis.

5.2 Example 2

5.2.1 2D material-void linear elastic L-beam

Through this example we demonstrate the applicability of
the proposed approach to stress-based topology optimiza-
tion using the benchmark problem of a 2D L-shaped beam.

(a) (b) (c)

1

Fig. 16 Finite element mesh, h = 0.2m, with initial seeding in 3D
for load case RE: a Top view; b Perspective view; c Slice along the
thickness. All dimensions are in m

We solve the compliance minimization problem of (18).
Two load cases are considered: i) Vertical load of P = 0.1N

applied to the middle of the right vertical edge (RE), dis-
tributed over two elements (Fig. 12a), ii) Vertical load of
P = 0.1N applied to the upper end of the flange (UF), dis-
tributed over two elements (Fig. 12b). The beam is made
of an isotropic elastic material with Young’s modulus, E =
100N/m2, and a Poisson’s ratio, ν = 0.3. The problem
domain is discretized using a mesh size of h = 0.2m. A list
of problem parameters is presented in Table 1.

For a structure with a desired volume ratio, it is required
that the maximum allowable stress be chosen carefully as
too low of a value will hinder greatly the convergence of

Table 2 Parameter list for topology optimization of single-phase 3D
linear elastic L-beam

Parameter 3D extension, load case RE

σmax 0.3N/m2

rφ 2.4 h

cJ 100

cP 0.006

cv 0.48

βV (up till iteration 360) 15

βV (iteration 360 onward) 18

β� 6

GCMMA step size 0.002

(up till iteration 360)

GCMMA step size 0.005

(iteration 360 onward)
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Fig. 17 Evolution of normalized compliance for 3D linear elastic L-beam

the optimization process. In contrast, a high value of max-
imum allowable stress will be ineffective in eliminating
regions with high stress concentrations. Consequently the
tuning parameters βV in Table 1 correspond to the highest
values that allowed for smooth convergence of the optimiza-
tion process. In the current example, the value of maximum
allowable stress and volume correspond to those describing
the optimized designs presented by Duysinx and Bendsøe
(1998).

Figure 13 shows the finite element mesh with the initial
seeding of the design domains using circular inclusions of
radius 0.4m. The black regions are occupied by the elastic
material (phase A). The void regions (phase B) are depicted
in grey. As mentioned in Section 3.3 faces lying on the
boundary of the mesh are not stabilized. To ensure that gra-
dients across all material faces are stabilized, we expand
the domain along the boundary of the beam. This extended
boundary is denoted by unshaded regions in Fig. 12. The

extended domain boundary serves the purpose of provid-
ing a material interface along the original domain boundary.
The resulting extra nodes created upon expansion of the
boundary are constrained to phase B and excluded from the
design domain. Also excluded from the design domain is a
small area around the region of application of the load pre-
scribed to phase A. This ensures that the load is applied to
the material phase A throughout the optimization process.

Figures 14 and 15 present the evolution of the normal-
ized compliance and constraints for load cases RE and UF,
respectively. The compliance is normalized with respect to
the compliance of the initial design presented in Fig. 13.
Select design iterations are visualized. For both load cases,
the initial design violates the constraints. Initially the opti-
mizer tries to satisfy the stress constraints while ignoring
the objective. Consequently, the compliance continues to
rise and the re-entrant corner profile has a lower curva-
ture. During this sequence, the flange remains horizontal.
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Fig. 18 Evolution of stress and volume constraints for 3D linear elastic L-beam
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Subsequently, a decrease in the compliance of the structure
and presence of active stress constraint result in an inclined
flange. Owing to the use of global constraints, the maxi-
mum stress is violated point-wise in the optimized designs,
the true maximum stress in which was 0.44N/m2 for both
load cases.

5.2.2 3D material-void linear elastic L-beam

Through this example we demonstrate the applicability of
the proposed to approach to linear elastic designs in 3D.
We extend load case RE to a 3D domain. Material and load
properties from Section 5.2.1 are used. The problem domain
is discretized using a mesh size of h = 0.2m. As in the
2D case, we expand the domain along the original boundary
of the beam including, along the thickness of the structure.
Figure 16 shows the finite element mesh with initial seeding
of the design domain using spherical inclusions of radius
0.7m. A list of relevant problem parameters is presented in
Table 2.

Figures 17 and 18 present the evolution of the normalized
compliance and constraints, respectively. As in the 2D case,
the initial design violates every constraint. As was observed
in the 2D case, the compliance of the structure rises initially
while the stress reduces. As a result, the re-entrant corner
profile has a lower curvature. Subsequently a decrease in
the compliance of the structure and presence of active stress
constraints result in a completely inclined flange.

During the optimization process it was observed that the
structure near the application of the load gets very thin as
the volume is reduced and develops a tendency to break
off completely. This phenomenon is represented by a spike
in the evolution plots of Figs. 17 and 18. To prevent the

(b)

(a)

0.6

0.4

0.3

0.2

0.715

0.046

von Mises Stress

(N/m2)

Fig. 19 Stress distribution in optimized design for 3D linear elastic
L-beam: a Without stress constraints, b With stress constraints

Table 3 Parameter list for topology optimization of 2D hyperelastic
L-beam

P 0.1N 0.4N 0.8N 1.2N

σmax(N/m2) 0.3 1.22 2.5 3.81

rφ 2.4 h 2.4 h 2.4 h 2.4 h

cJ 100 10 10 1

cP 0.005 0.01 0.02 0.006

cv 0.48 0.48 0.48 0.48

βV 20 20 20 20

GCMMA step size 0.005 0.005 0.0025 0.0025

structure from completely breaking off we adopt a contin-
uation strategy for the GCMMA step size, starting with a
small value and as the volume constraint is close to being
satisfied the step size is increased. Reducing the volume of
a structure is counteractive to reducing the stress. Thus, to
facilitate smooth convergence of the optimization problem
a continuation strategy is also adopted for the KS tuning
coefficient, βV .

Figure 19 presents a comparison of the final designs
obtained with and without stress constraints. In the absence
of stress constraints, the re-entrant corner is retained result-
ing in localized high stresses. Imposing stress constraints
resulted in a design with 61.9% lower peak stress at only a
cost of 3.8% higher compliance.

(a) (b)

(d)(c)

1.79

0.84

1.99

0.76

2.08

0.73

2.42

0.67

≈1070 ≈1060

≈1050 ≈1030

Fig. 20 optimized design for: a P = 0.1N ; b P = 0.4N ; c P =
0.8N ; d P = 1.2N ; All dimensions are in m
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Fig. 21 Evolution of objective and constraints for 2D hyperelastic L-beam, P = 1.2N/m2

5.3 Example 3

In this section, we demonstrate the applicability of the pro-
posed approach to 2D and 3D hyperelastic material-based
designs. For a nonlinear structural model, stress peaks affect
the stability of the system of equations, and can impede con-
vergence of Netwon’s method. XFEM informed smoothing
with ghost penalty helps keep the stress peaks in check, thus
providing smooth convergence of the structural analysis.

We consider load case RE from Section 5.2.1 to opti-
mize an L-beam structure made of Saint Venant-Kirchhoff
hyperelastic material. The 2D design is solved under plane
strain assumptions. Comparisons are drawn against opti-
mized designs obtained using linear elastic material under
plane strain conditions. Material properties from Section 5.2
are used. The problem domain is discretized using the same
mesh as in Fig. 13a. We compare designs optimized for
4 increasing magnitudes of load. Table 3 presents a com-
pletelist of relevant problem parameters. To be able to com-
pare results for different load magnitudes, the maximum
allowable stress values are chosen such that the initial stress
constraint violation is similar in all loading cases consid-
ered. Alternatively, a constant value for maximum allowable

max von Mises stress recorded
0 2 4 6 8 10

P
 (

N
)

0

0.2

0.4

0.6

0.8

1

1.2

Linear isotropic material

 hyperelastic material

Fig. 22 Load vs stress plot for optimized design corresponding to
P = 1.2N

stress can be chosen across all loading cases. However, in
such a scenario the appropriate maximum allowable volume
should be determined.

Figure 20 presents a comparison of the optimized designs
obtained under application of the different loads listed in
Table 3. As the magnitude of the applied load is increased,
the region around the flange tip (which is the region of appli-
cation of load) ascends resulting in a flange with a lower
slope. Moreover, increasing amounts of material are rein-
forced near the region of application of load further pushing
the void features away from the flange tip. This increase
in material near the flange tip is a clear countermeasure to
the increased loading in the region. Another distinct design
change with increased loading is the thinning of the web
base near the re-entrant corner. Owing to the use of global
constraints, the maximum stress is violated point-wise in the
optimized designs, the true maximum stress in which were
0.42N/m2, 1.7N/m2, 3.5N/m2, and 5.4N/m2 for load
cases P = 0.1N , P = 0.4N , P = 0.8N , and P = 1.2N ,
respectively.

Figure 21 presents the evolution of the normalized com-
pliance and constraints for load case of P = 1.2N . Smooth
convergence of objective and constraints is observed. For all
hyperelastic material-based studies presented here, smaller
optimization steps were required with an increase in load
for smooth convergence of the optimization problem. Con-
sequently, more optimization steps were required to achieve
an optimized design under increased loading.

(a)

1.76

0.86
≈1070

(b)

1.97

0.83 ≈1080

Fig. 23 optimized design for linear elastic material under plane strain
assumptions: a P = 0.1N , σmax = 0.3N/m2; b P = 1.2N , σmax =
3.81N/m2; All dimensions are in m
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Table 4 Parameter list for topology optimization of 3D hyperelastic
L-beam

P 0.4N

σmax 1.215N/m2

rφ 2.4 h

cJ 10

cP 0.01

cv 0.48

βV 15

β� 6

GCMMA step size 0.002

(up till iteration 500)

GCMMA step size 0.005

(iteration 500 onward)

Figure 22 presents the relationship between the applied
load, P , and the maximum von Mises stress in the struc-
ture. The data plotted corresponds to the optimized design
obtained for load case, P = 1.2N . Based on the plots it
is deduced that the small strain limit assumptions, for the
material properties in consideration, hold true up to the point
where the maximum load applied is ≤ 0.1N . Subsequently
for higher loads, inaccurate optimized designs are expected
with the use of linear elastic materials. To validate this dis-
crepancy, we perform a comparison of designs using linear
elastic material under plane strain assumptions.

Problem parameters for P = 0.1N and P = 1.2N from
the hyperelastic material-based studies (Table 3) are used.

(a)

von Mises Stress(N/m2)

2.41.81.20.6

3.0720

(b)

Fig. 24 Stress distribution in (a) initial, and (b) optimized design for
3D hyperelastic L-beam

(a) (b)

0
0.15 0.3 0.45

0.54

von Mises Stress (N/m2)

Fig. 25 Material-material L-beam problem setup: a Initial material-
material seeding; b Initial stress profile

The optimized designs are presented in Fig. 23. The opti-
mized design for P = 0.1N (Fig. 23a) resembles very
closely the optimized design obtained using the hyperelastic
material load case of P = 0.1N (Fig. 20a). This is expected
as based on Fig. 22a load of P = 0.1N is within the small
strain limit. In contrast, load case P = 1.2N (Fig. 23b)
resulted in an optimized design that more closely resem-
bles the design obtained using the hyperelastic material load
case of P = 0.1N rather than the design obtained using
the hyperelastic material load case of P = 1.2N (Fig. 20d).
This further highlights the inaccuracies of using a linear
elastic material for design optimization purposes outside the
small strain limit.

We extend the load case of P = 0.4N to 3D. As in
the linear elastic case we adopt a continuation strategy,
starting with a small optimization step size and as the vol-
ume constraint is close to being satisfied the step size is
increased. Table 4 provides the list of relevant problem
parameters. Figure 24b presents the stress plots for the ini-
tial and final design. The removal of the re-entrant corner
in the optimized design shows the effectiveness of the pro-
posed approach for 3D nonlinear stress-based optimization
problems. The true maximum stress in the optimized design
was 1.9N/m2.

Table 5 Parameter list for topology optimization of two-phase 2D
linear elastic L-beam

σmax(N/m2) 0.27 0.25 0.23 0.21

rφ 2.4 h 2.4 h 2.4 h 2.4 h

cW 1 1 1 1

cP 0.0005 0.0005 0.001 0.008

βV 20 20 20 20

GCMMA step size 0.01 0.01 0.01 0.02
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(a) (b)

(c) (d)

Fig. 26 Material distribution in optimized designs obtained for: a
σmax = 0.27N/m2; b σmax = 0.25N/m2; c σmax = 0.23N/m2; d
σmax = 0.21N/m2

5.4 Example 4

Through this example we demonstrate the applicability of
the proposed approach to material-material designs. We
solve the optimization problem presented in (19) using lin-
ear elastic materials. Load case RE from Section 5.2.1
with P = 0.1N is considered in 2D. Elastic moduli of
EA = 100N/m2 and EB = 50N/m2 are used for materi-
als constituting material phases A and B, respectively. An
interface constraint penalty of c� = 10 was used in (8).
The problem domain is discretized using a mesh size of
h = 0.2m. The structural analysis is performed under plane
stress assumptions.

Figure 25a shows the initial seeding of the design
domains. The black regions are occupied by the stiffer
material (phase A). The regions occupied by the less stiff
material are depicted in light grey (phase B). To ensure gra-
dients across all material faces are stabilized, we expand the
domain along the boundary of the beam, denoted by dark
grey regions in Fig. 25b. Phase B constitutes this extended
domain boundary wherein the elastic modulus of phase B

is set to 10−6N/m2 to simulate a void region. The result-
ing extra nodes created upon expansion of the boundary are
constrained to phase B, and thus excluded from the design
domain. Also excluded from the design domain is a small
area around the region of application of the load prescribed
to phase A. This ensures that the load is applied to the
material phase A throughout the optimization process.

Fig. 27 Stress distribution in
optimized designs obtained for:
a σmax = 0.27N/m2; b
σmax = 0.25N/m2; c
σmax = 0.23N/m2; d
σmax = 0.21N/m2

(a) (b)

(c)

0
0.15 0.3 0.45

0.54

von Mises Stress (N/m2)

(d)

Initial design
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Fig. 28 Evolution of objective and constraints for σmax = 0.25N/m2

We optimize the design domain for different values of
maximum allowable stress presented in Table 5. Figure 26
presents the material distribution for the optimized designs.
The optimizer removes all of the stiff material except for
near the re-entrant corner where the stiff material appears
in the form of step-like features. Such a concentration of
the stiff material provides reinforcement to the weak mate-
rial present at the re-entrant corner which is a region of
high stress concentration. As is expected, the amount of stiff
material in the optimized design increases with decreasing
maximum allowable stress. The volume occupied by the
stiffer material in optimized designs presented in Fig. 26a
through d is 2%, 5%, 14%, and 44%, respectively. Figure 27
presents the corresponding stress distribution. Figure 28
presents the evolution of objective and constraints cor-
responding to σmax = 0.25N/m2. We observe smooth
convergence of stress constraints, thus showing the effec-
tiveness of the proposed approach for material-material
designs. The authors note, the number of optimization steps
to achieve convergence increased with a decrease in the
value of maximum allowable stress.

6 Conclusions

We presented and studied an LSM-XFEM approach for
topology optimization problems subject to stress con-
straints. The issue of overestimation of stresses resulting
from small intersection areas, following vanishing zone
of influence of degrees of freedom, was addressed. For
the computation of reliable stresses, i) we adopt the ghost
penalty method of Burman and Hansbo (2014), and ii) intro-
duce an XFEM informed stress smoothing method. The
ghost penalty method, in addition to penalizing the spatial
solution gradients across element edges, prevents the influ-
ence of degrees of freedom from vanishing and provides sta-
bility to the system of equations. However as shown through
a numerical study, ghost penalty alone is not sufficient in
obtaining convergence of stresses along the material inter-
face with mesh refinement. The XFEM informed smoothing

in combination with ghost penalty provides a second level
of spatial gradient stabilization which was shown to be
effective in eliminating stress peaks and attain convergence
with mesh refinement. We showed through a numerical
study that stabilization of gradients across element faces
helps to largely reduce oscillations in stress sensitivities. In
comparison with an area weighted smoothing, the XFEM
informed smoothing led to a more robust and accurate pre-
diction of stresses and stress sensitivities along the material
interface.

The spatial gradient stabilization framework results in
non-smooth behavior of stresses across neighboring ele-
ments. Thus, the stress sensitivities are non-differentiable
when the material interface transitions an element. The
approach to computing sensitivities used in the current work
is however unaffected by this behavior (see Sharma et al.
2017), as it is ensured that the material interface does not
transition an element over the course of sensitivity analysis.
These issues of non-differentiability are more than compen-
sated by the overall gain in smoothness when compared to
non-gradient stabilized XFEM formulations.

The proposed approach was applied to the benchmark
topology optimization problem of a material-void L-shaped
beam in 2D and 3D using elastic and hyperelastic materials.
Stress constraints were imposed using a global approach,
and were effective in mitigating peak stresses. This mani-
fests itself in the removal of the re-entrant corner. Optimized
designs obtained using hyperelastic material suggested a
pattern in design change with increase in applied load.
This indicates that optimizing a structure using a linear
elastic model outside the small-strain limit may produce
non-optimal designs.

We extended the topology optimization problem of an
L-shaped beam to a material-material domain in 2D using
elastic materials. Optimized designs were presented for dif-
ferent values of maximum allowable stress with each case
resulting in the formation of stiff step-like structure near
the re-entrant corner. As expected, a lower value of max-
imum allowable stress resulted in an optimized structure
with more stiff material.

For all optimization examples considered smooth con-
vergence of stress constraints was reported based on the
constraint evolution plots presented.

The proposed method for computation of stresses is an
improvement over existing methods. In its current frame-
work stresses are non-differentiable as the material inter-
face transitions an element. Future studies should focus on
resolving this issue. Furthermore, more accurate measures
for stress constraints such as the regional measure of Le
et al. (2010) should be employed for better control of local
stress levels. In addition, multi-phase problems involving
more than two materials should be considered.
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Babuška I, Melenk JM (1997) The partition of unity method. Int J
Numer Methods Eng 40(4):727–758

Bendsøe M, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods
Appl Mech Eng 71(2):197–224

Bruggi M, Duysinx P (2012) Topology optimization for minimum
weight with compliance and stress constraints. Struct Multidiscip
Optim 46(3):369–384

Burger M, Hackl B, Ring W (2004) Incorporating topological
derivatives into level set methods. J Comput Phys 194(1):344–
362

Burman E, Hansbo P (2014) Fictitious domain methods using cut
elements: III. a stabilized nitsche method for stokes’ prob-
lem. ESAIM: Mathematical Modelling and Numerical Analysis
48(3):859–874

Cai S, Zhang W, Zhu J, Gao T (2014) Stress constrained shape and
topology optimization with fixed mesh: A B-spline finite cell
method combined with level set function. Comput Methods Appl
Mech Eng 278:361–387

Cheng G, Guo X (1997) ε-relaxed approach in structural topology
optimization. Structural Optimization 13(4):258–266

Cheng G, Jiang Z (1992) Study on topology optimization with stress
constraints. Eng Optim 20(2):129–148

Coffin P, Maute K (2016) A level-set method for steady-state and
transient natural convection problems. Struct Multidiscip Optim
53(5):1047–1067

Dijk N, Maute K, Langelaar M, Keulen F (2013) Level-set methods
for structural topology optimization: a review. Struct Multidiscip
Optim 48(3):437–472

Duysinx P, Bendsøe MP (1998) Topology optimization of continuum
structures with local stress constraints. Int J Numer Methods Eng
43(8):1453–1478

Duysinx P, Sigmund O (1998) New developments in handling stress
constraints in optimal material distributions. In: Proceedings of
7th AIAA/USAF/NASA/ISSMO symposium on Multidisciplinary
Design Optimization, AIAA

Duysinx P, Van Miegroet L, Jacobs T, Fleury C (2006) General-
ized shape optimization using x-FEM and level set methods. In:
IUTAM symposium on topological design optimization of struc-
tures, machines and materials. Springer, Netherlands, pp 23–32

Fries T, Belytschko T (2010) The extended/generalized finite element
method: an overview of the method and its applications. Int J
Numer Methods Eng 84(3):253–304

Guo X, Zhang W, Wang MY, Wei P (2011) Stress-related topology
optimization via level set approach. Comput Methods Appl Mech
Eng 200(47–48):3439–3452

Guo X, Zhang W, Zhong W (2014) Stress-related topology opti-
mization of continuum structures involving multi-phase materials.
Comput Methods Appl Mech Eng 268:632–655

Haber R, Jog C, Bendsøe M (1996) A new approach to variable-
topology shape design using a constraint on perimeter. Structural
Optimization 11(1):1–12

Hansbo A, Hansbo P (2004) A finite element method for the simulation
of strong and weak discontinuities in solid mechanics. Comput
Methods Appl Mech Eng 193(33–35):3523–3540

Holmberg E, Torstenfelt B, Klarbring A (2014) Fatigue constrained
topology optimization. Struct Multidiscip Optim 50(2):207–219

Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, West Sussex
James KA, Waisman H (2014) Failure mitigation in optimal topol-

ogy design using a coupled nonlinear continuum damage model.
Comput Methods Appl Mech Eng 268:614–631

Jenkins N, Maute K (2015) Level set topology optimization of station-
ary fluid-structure interaction problems. Struct Multidiscip Optim
52(1):179–195

Kreissl S, Maute K (2012) Levelset based fluid topology optimiza-
tion using the extended finite element method. Struct Multidiscip
Optim 46(3):311–326

Lang C, Sharma A, Doostan A, Maute K (2015) Heaviside enriched
extended stochastic fem for problems with uncertain material
interfaces. Comput Mech 56(5):753–767

Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based
topology optimization for continua. Struct Multidiscip Optim
41(4):605–620

Makhija D, Maute K (2014) Numerical instabilities in level set topol-
ogy optimization with the extended finite element method. Struct
Multidiscip Optim 49(2):185–197
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Appendix D

Implementation Details

D.1 A parallel multilevel filter framework

Direction of 

evaluation

Tree Level 0

Tree Level 1

Tree Level 2

Tree Level n-1

Tree Level n

𝑠𝑛 = 𝑓𝑛(𝒔𝑛−1 𝒔𝑛−2…(𝒔0) )

Direction of 

construction

Figure D.1: Tree of variables.

This section describes the concept of a multilevel filter designed to operate in a parallel

computing framework. The multilevel filter uses a tree of variables (Figure D.1) wherein a

variable at any given level is a function of the variables from the level just below it. Any

variable at level n in the tree is referred to as a ’tree node’ with it’s ’branches’ defined by

the set of all tree nodes it is a function of from level n− 1. Every tree node has information

about it’s current value, the list of branches it is dependent on, and the function determining

that dependency. In addition, every tree node at level n owns a gradient vector containing

the derivatives of sn w.r.t. s0. In order to save memory this vector is stored in sparse format.
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Figure D.2: Example decomposition of variables with dependencies in a parallel multilevel
filter framework.

To avoid confusion against finite element nodes, from hereon we shall avoid the term ’tree

node’ and refer to them as variables.

To describe the basic concepts of such a tree we use the example problem presented in

Figure D.2. A variable in the tree is denoted by slvlind where lvl and ind denote the variable

level and global index respectively. The bottom level of the filter comprises of abstract

design variables (adv). These are the design variables in an optimization problem such

as the element density, nodal level set value, nodal coordinate, geometric primitive, or a

combination of geometric and nodal/elemental design variables. The top level of variables

comprises of physical design variables (pdv). These are the variables that determine the

material layout in a topology optimization problem and are associated with an element or

a node, such as filtered elemental density or regularized nodal level set values. Any level of

variables between the pdv and adv are referred to as pseudo physical design variables (pseudo

pdv), and are associated with a node or an element. Pseudo pdv levels are interpreted as
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intermediate values assumed by the pdvs upon which further operations may be performed

to obtain the desired material layout. For instance in Section 4.2 the anisotropic filter (4.8)

is applied to the level set values computed using the definition of individual ribs (4.5).

In a parallel computing framework the decomposition of the pdv level follows directly

the decomposition of the discretized physical subdomain [125]. The multilevel filter is then

constructed for parallel computing by initializing all variables that influence directly or

indirectly the variables at the pdv level specific to that processor. The construction of the

multilevel filter thus begins at the top level going downwards as shown in Figure D.1. The

following sections describe the algorithm behind constructing each level of the multilevel

filter, using the example in Figure D.2. The ensuing discussion assumes access to a complete

as well as processor-specific list of nodes and elements with relevant data (e.g. coordinates)

arranged accordingly.

Before describing the construction of the multilevel filter we define the important lists

and maps necessary to build the filter:

(i) A tree with user-defined number of levels. The size of each level is determined as

each level is constructed and depends on the number of variables required to build

the processor-specific multilevel filter at that level. The number of levels in the

example problem of Figure D.2 is 3.

(ii) A map var ind 7→ node(element) data entry. The map keeps track of the nodal or

elemental variables which have been assigned user-desired data (e.g. coordinates)

across all variable levels in the processor-specific multilevel filter. The map is build

in the order in which the variables are assigned to the tree. For processor 2 in Figure

D.2, this map would read [(3, 0) (1, 1) (4, 2) (0, 3) (2, 4) (5, 5) (6, 6)].

(iii) The list node(element) data stores the user-desired data in the order specified by

the map. As evident from Figure D.2 certain variables such as s0 (for processor 1)

may be a part of more than one level. Although they assume different values, data
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such as their coordinate (in an Eulerian setting) remains constant throughout these

levels. This map and list combination helps avoid creating duplicate information by

maintaining a global registry of the data allocated to each variable. It is assumed

that the user has access to such a list of data ordered according to the complete (not

processor-specific) list of nodes/elements.

(iv) A list lvl hosts var indicating if the nodal(elemental) variable is used in the current

level. For level 1 corresponding to processor 1 in Figure D.2, this list would read

[1 0 1 1 0].

(v) A two way map var ind ↔ entry ind mapping the variable index to it’s entry in

the tree at the current level, and vice versa. For level 1 corresponding to processor

1 in Figure D.2, this map would read [(0, 0) (2, 1) (3, 2)].

D.1.1 Constructing the physical design variable level

Creating the pdv level assumes knowledge of the desired variable type (nodal or ele-

mental) and the function fn(sn−1) that relates the pdv with pseudo pdv.

for every variable in pdv level do
→ Flag the nodes(elements) on the current processor using lvl hosts var.
→ Use var ind↔ entry ind to assign an entry index to every variable in level.

end for

→ Allocate size of current variable level in tree ( size of var ind↔ entry ind ).

for every entry in var ind↔ entry ind do
→ Use var ind 7→ node(element) data entry to check if data for this variable exists.
if above is false then
→ Store data in node(element) data.
→ Update var ind 7→ node(element) data entry.

end if
→ Create entry in tree and assign variable data and fn(sn−1).

end for



www.manaraa.com

178

D.1.2 Constructing the pseudo physical design variable level

Creating a pseudo pdv level assumes knowledge of the desired variable type (nodal or

elemental) for both the current and pdv level. Also assumed is the knowledge of the filter

radius [28] and function fn(sn−1) that relates the pseudo pdv with the adv.

for every variable flagged in lvl hosts var do
for every node(element) in finite element mesh do
→ Build list of possible dependencies (node or element) based on user-desired cri-

teria (e.g. radial distance).
end for

end for

→ Concatenate and sort the unique list of all dependencies.
→ Clear lvl hosts var and var ind↔ entry ind.

for every variable in the list of unique dependencies do
→ Flag the nodes(elements) on the current processor using lvl hosts var.
→ Use var ind↔ entry ind to assign an entry index to every variable in level.

end for

→ Allocate size of current variable level in tree ( size of var ind↔ entry ind ).

for every entry in var ind↔ entry ind do
→ Use var ind 7→ node(element) data entry to check if data for this variable exists.
if above is false then
→ Store data in node(element) data.
→ Update var ind 7→ node(element) data entry.

end if
→ Create entry in tree and assign variable data and fn(sn−1).

end for

for every entry at the level n+ 1 in tree do
for every dependency do
→ Extract variable index from the list of dependencies.
→ Assign branch from level n to level n+ 1 using var ind↔ entry ind

end for→
Assign the list of branches to entry at level n+ 1.

end for

Note, selecting dependencies based on radial distance is just an option. Depending on the

requirements of the filter the dependencies may very well be selected based on any other
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criteria.

D.1.3 Constructing the abstract physical design variable level

Creating an adv level assumes knowledge of the desired variable type (nodal or ele-

mental) for both the current and pseudo pdv level. Also assumed is the knowledge of the

filter radius [28] that determines the adv dependencies on the pseudo pdv. The construction

of the adv level is performed in a very similar manner to the pseudo pdv level, except a

few minor differences. If the adv type is not nodal or elemental, it is assumed that all adv

constitute dependency to every single variable in the pseudo pdv level. Furthermore when

creating a new entry in the tree at the adv level, each entry is assigned a sparse gradient

vector which accounts for self-dependency (i.e.
∂s0i
∂s0j
δij = 1).

D.1.4 Updating the tree

Updating the tree is fairly straightforward and involves a bottom to top flow of infor-

mation. Each level of variables is evaluated using the pre-assigned function to that variable

and the relevant list of updated variables from the level right below. Gradient vectors asso-

ciated with each variable follow a similar flow of information and are updated based on the

following chain rule, e.g. for design variable s2
0 in Figure D.2,

ds2
0

ds0
= c0,0

ds1
0

ds0
+ c0,2

ds1
2

ds0
; cj,i =

∂snj

∂sn−1
i

. (D.1)

D.2 Constructing ∇φ using a point cloud

Working on a modular research-based optimization framework entails having no knowl-

edge about the connectivity of the finite element mesh. Consequently the gradient of the

level set field required for evaluating the normal to a surface is computed using a point cloud

as in meshfree methods [79]. Let φ̂(x ) be the field function defined in Ω. Using Moving
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Least Squares (MLS), the approximation can be defined as:

φ̂(x ) =
m∑
j=1

pj(x )aj(x ) = pT (x )a(x ), (D.2)

where m is the number of terms of polynomial basis, and a(x ) is a vector of coefficients

which are a function of the spatial coordinate, x . Furthermore, p(x ) is a vector of basis

functions that consists most often of monomials of the lowest order. Thus, e.g. in 2D space,

the complete polynomial basis of order m is given by

pT (x ) = {1, x, y, xy, x2, y2, ..., xm, ym}. (D.3)

Given a set of n nodal values for the field function, φ, in the support domain, (D.2) is

then used to calculate the approximated values of the field function at these nodes:

φ̂(x ,x i) = pT (x i)a(x ), i = 1, 2, ...n. (D.4)

Note that a(x ) is an arbitrary function of the spatial coordinates. A functional, J of

weighted residual is constructed using the approximated values of the field function and the

nodal function values, φi = φ(x i), such that

J =
n∑
i

W (x − x i)[φ̂(x ,x i)− φ(x i)]
2

=
n∑
i

W (x − x i)[p
T (x i)a(x )− φi]2,

(D.5)

where W (x − x i) is a weight function which can be represented, e.g. using an exponential

weighting function:

W (x − x i) = W (d̄) =


e−(d̄/α)2

d̄ ≤ 1

0 d̄ > 1

, (D.6)

where α is a constant and usually takes the value α = 0.3 [79] or α = 0.4 [10]. The normalized

distance vector, d̄ , takes the form |x − x i|/dw with dw = max(|x − x i|). The weighting

function plays two important roles:
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(1) The first is to provide weightings for the residuals at different nodes in the support

domain such that nodes further from x have small weights.

(2) It ensures that the MLS shape functions satisfy the compatibility conditions [79].

The arbitrary function, a(x ), is chosen to minimize (D.5) such that ∂J/∂a = 0. This

results in the following system of linear equations:

A(x )a(x ) = B(x )U s, (D.7)

where A is called the weighted moment matrix given by

A(x ) =
n∑
i

Wi(x )p(x i)p
T (x i), Wi(x ) = W (x − x i). (D.8)

The matrix B has the form

B(x ) = [B1,B2, ...,Bn], B i(x ) = W i(x )p(x i), (D.9)

and U s is the vector of field functions for all the nodes in the support domains. Solving

(D.7) for a(x ) leads to

φ̂(x ) =
n∑
i

m∑
j

pj(x )
(
A−1(x )B(x )

)
ji
φi =

n∑
i

Ni(x )φi = N (x )U s, (D.10)

where the MLS shape function, Ni, is given by

Ni = pTA−1B i. (D.11)

Note that m is the number of terms of polynomial basis p(x) which should be much smaller

than n. This requirement prevents the singularity of the weighted moment matrix.

In order to obtain partial derivatives of the shape functions we write the shape functions

as

Ni(x ) = γT (x )B i(x ), (D.12)

where γ(x ) is the solution to the following system of equations.

A(x )γ(x ) = p(x ). (D.13)
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The partial derivatives of γ(x) can then be obtained as follows:

A
∂γ

∂xk
=

∂p

∂xk
− ∂A

∂xk
γ. (D.14)

The partial derivative of the MLS shape functions is then given by,

∂Ni
∂xk

=
∂γ

∂xk
B i + γ

∂B i

∂xk
. (D.15)

It is important to note that the MLS shape functions do not satisfy the Kronecker

delta criterion Ni(x j) 6= δij =⇒ φ̂(x i) 6= φi. Therefore the MLS shape functions are

approximants rather than interpolants. Thus, the approximation of the field function at

node i, φ̂(x i), depends not only on the nodal function value φi but on all nodal function

values within the support domain.
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